DOI QR코드

DOI QR Code

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun (Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Orawan Chunhachart (Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Moltira Srithaworn (Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Rungnapa Tangchitcharoenkhul (Graduate School, Suan Dusit University) ;
  • Janpen Tangjitjareonkun (Department of Resources and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus)
  • 투고 : 2022.06.27
  • 심사 : 2022.10.12
  • 발행 : 2022.11.28

초록

Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

키워드

과제정보

This work was supported by the Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand under grant no. FF(KU)18.64. We thank Prof. Dr. Uthirat Na-Nakorn for her helpful discussion. Mr. Ongart Tara, Ms. Kanyanat Sartprem and Ms. Sasithorn Saetia provided technical assistance.

참고문헌

  1. OAE. 2021. Agricultural Statistics of Thailand 2021. Office of Agricultural Economics (OAE). Ministry of Agriculture and Cooperatives: Bangkok, Thailand. Available online: https://www.oae.go.th/assets/portals/1/files/jounal/2565/yearbook2564.pdf
  2. Takrattanasaran N, Chanchareonsook J, Thongpae S, Sarobol E. Evaluation of mehlich and ammonium bicarbonate-DTPA extractants for prediction of available zinc in calcareous soils in central Thailand. 2010. Kasetsart J. (Nat. Sci.) 44: 824-829.
  3. Takrattanasaran N, Chanchareonsook J, Johnson PG, Thongpae S, Sarobol E. 2013. Amelioration of zinc deficiency of corn in calcareous soils of Thailand: zinc sources and application methods. J. Plant Nutr. 36: 1275-1286. https://doi.org/10.1080/01904167.2013.784983
  4. Chittamart N, Inkam J, Ketrot D, Darunsontaya T. Geochemical fractionation and adsorption characteristics of zinc in Thai major calcareous soils. 2016. Commun. Soil Sci. Plant Anal. 47: 2348-2363. https://doi.org/10.1080/00103624.2016.1243709
  5. Alloway BJ. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31: 537-548. https://doi.org/10.1007/s10653-009-9255-4
  6. Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenco T, Chander S, et al. 2012. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J. Exp. Bot. 63: 3643-3656. https://doi.org/10.1093/jxb/ers035
  7. Singh B, Natesan SKA, Singh BK, Usha K. 2005. Improving zinc efficiency of cereals under zinc deficiency. Curr. Sci. 88: 36-44.
  8. Ismail C, Horst M, Fritz B. 1989. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot. 40: 405-412. https://doi.org/10.1093/jxb/40.3.405
  9. Marschner H. 2002. Functions of Mineral Nutrients: Micronutrients, pp. 313-404. In Marschner H (ed.), Marschner's Mineral Nutrition of Higher Plants, 2nd, Ed. Academic Press, San Diego.
  10. Hussain S, Maqsood MA, Rahmatullah M. 2010. Increasing grain zinc and yield of wheat for the developing world: a review. Emir. J. Food Agric. 22: 326-339.
  11. Zhao A, Tian X, Chen Y, Li S. 2016. Application of ZnSO4 or Zn-EDTA fertilizer to a calcareous soil: Zn diffusion in soil and its uptake by wheat plants. J. Sci. Food. Agric. 96: 1484-1491. https://doi.org/10.1002/jsfa.7245
  12. Fasim F, Ahmed N, Parsons R, Gadd GM. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1-6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
  13. Saravanan VS, Madhaiyan M, Thangaraju M. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798. https://doi.org/10.1016/j.chemosphere.2006.07.067
  14. Vidyashree ND, Muthuraju R, Panneerselvam P, Saritha B, Ganeshamurthy AN. 2016. Isolation and characterization of zinc solubilizing bacteria from stone quarry dust powder. Int. J. Agri. Sci. 8: 3078-3081.
  15. Yasmin R, Hussain S, Rasool MH, Siddique MH, Muzammil S. 2021. Isolation, characterization of Zn solubilizing bacterium (Pseudomonas protegens RY2) and its contribution in growth of chickpea (Cicer arietinum L) as deciphered by improved growth parameters and Zn content. Dose-response. 19: 15593258211036791.
  16. Mitra D, Mondal R, Khoshru B, Senapati A, Radha TK, Mahakur B, et al. 2022. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: advances in soil, plant, and microbial multifactorial interactions. Pedosphere 32: 149-170. https://doi.org/10.1016/S1002-0160(21)60042-5
  17. Kim KR, Suh JW. 2008. The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of spcM in Streptomyces spectabilis. Curr. Microbiol. 57: 371-374. https://doi.org/10.1007/s00284-008-9204-y
  18. Wahyudi AT, Priyanto JA, Afrista R, Kurniati D, Astuti RI, Akhdiya A. 2019. Plant growth promoting activity of actinomycetes isolated from soybean rhizosphere. OnLine J. Biol. Sci. 19: 1-8. https://doi.org/10.3844/ojbsci.2019.1.8
  19. Dastager SG, Deepa CK, Pandey A. 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol. Biochem. 48: 987-992. https://doi.org/10.1016/j.plaphy.2010.09.006
  20. Singh P, Kumar V, Agrawal S. 2014. Evaluation of phytase producing bacteria for their plant growth promoting activities. Int. J. Microbiol. 2014: 426483.
  21. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, et al. 2015. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann. Microbiol. 65: 1885-1899. https://doi.org/10.1007/s13213-014-1027-4
  22. Anwar S, Ali B, Sajid I. 2016. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (pgp) traits and for agroactive compounds. Front. Microbiol. 7: 1334.
  23. Singh SP, Gaur R. 2016. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. J. Appl. Microbiol. 121: 506-518. https://doi.org/10.1111/jam.13176
  24. Han D, Wang L, Luo Y. 2018. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiol. Res. 208: 1-11. https://doi.org/10.1016/j.micres.2018.01.003
  25. Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, et al. 2021. The screening of potassium- and phosphatesolubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9: 470.
  26. Patel KB, Thakker JN. 2020. Deliberating plant growth promoting and mineral-weathering proficiency of streptomyces nanhaiensis strain YM4 for nutritional benefit of millet crop (Pennisetum glaucum). J. Microbiol. Biotechnol. Food Sci. 9: 721-726. https://doi.org/10.15414/jmbfs.2020.9.4.721-726
  27. Hellal FA, Abdelhamid MT. 2013. Nutrient management practices for enhancing soybean (Glycine max L.) production. Acta Biol. Colomb. 18: 239-250.
  28. Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR. 2015. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil. 389: 1-24. https://doi.org/10.1007/s11104-015-2430-8
  29. Hazra G. 2014. Slow or controlled release fertilizers for the holistic approach to economical and environmental issues: a review. IJMER. 3: 190-208.
  30. Bhattacharya S, Malleshi NG. 2012. Physical, chemical and nutritional characteristics of premature-processed and matured green legumes. J. Food Sci. Technol. 49: 459-466. https://doi.org/10.1007/s13197-011-0299-y
  31. Anderson AS, Wellington EM. 2001. The taxonomy of Streptomyces and related genera. Int. J. Syst. Evol. Microbiol. 51: 797-814. https://doi.org/10.1099/00207713-51-3-797
  32. Kelly KL, Judd DB. 1965. ISCC-NBS color-name charts illustrated with centroid colors. Washington, DC: National Bureau of Standards.
  33. Bunt JS, Rovira AD. 1955. Microbiological studies of some subantarctic soils. J. Soil Sci. 6: 119-128. https://doi.org/10.1111/j.1365-2389.1955.tb00836.x
  34. Sharma P, Kunawat KC, Kaur S, Kaur N. 2014. Assessment of zinc solubilization by endophytic bacteria in legume rhizosphere. Ind. J. Appl. Res. 4: 439-441.
  35. Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26: 192-195. https://doi.org/10.1104/pp.26.1.192
  36. Pikovsakaya RE. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia 17: 362-370.
  37. Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  38. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  39. Cappuccino J, Sherman N. 1992. Microbiology: A Laboratory Manual, pp. 125-179. 3rd Ed. Benjamin/Cumming Pub. Co, New York.
  40. Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16: 313-340.
  41. Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A, Takahashi Y. 2015. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J. Antibiot. 68: 368-372. https://doi.org/10.1038/ja.2014.166
  42. Gordon RE. 1967. The taxonomy of soil bacteria, pp. 293-321. In Gray TRG, Parkinson D (ed.), The ecology of soil bacteria. Liverpool University Press, Liverpool.
  43. Waksman, S. A. 1950. The actinomycetes-their nature, occurrence, activities, and importance. J. Am. Med. Assoc. 144: 505-506.
  44. Kawamoto I, Oka T, Nara T. 1981. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J. Bacteriol. 146: 527-534. https://doi.org/10.1128/jb.146.2.527-534.1981
  45. Staneck JL, Roberts GD. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28: 226-231. https://doi.org/10.1128/am.28.2.226-231.1974
  46. Kawasaki H, Hoshino Y, Hirata A, Yamasato K. 2004. Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch. Microbiol. 160: 358-362.
  47. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S, Seki T, et al. 2000. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol. 50: 823-829. https://doi.org/10.1099/00207713-50-2-823
  48. Katsura K, Kawasaki H, Potacharoen W, Saono S, Seki T, Yamada Y, et al. 2001. Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol. 51: 559-563. https://doi.org/10.1099/00207713-51-2-559
  49. Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, et al. 2015. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl. Biochem. Biotechnol. 175: 3709-3728. https://doi.org/10.1007/s12010-015-1539-9
  50. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  51. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  52. Hall TA. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for WINDOWS 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.
  53. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  54. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  55. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  56. Paolo Nannipieri P, Ascher J, Teresa Ceccherini MT, Landi L, Pietramellara G, Renella G, et al. 2007. Microbial diversity and microbial activity in the rhizosphere. Cienc. Suelo. 25: 89-97.
  57. Khamna S, Yokota A, Lumyong S. 2008. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25: 649-655. https://doi.org/10.1007/s11274-008-9933-x
  58. Peng F, Zhang M-Y, Hou S-Y, Chen J, Wu Y-Y, Zhang Y-X. 2020. Insights into Streptomyces spp. isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiol. 20: 143.
  59. Goteti PK, Emmanuel LDA, Desai S, Shaik MHA. 2013. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int. J. Microbiol. 2013: 869697.
  60. Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3: 185-190. https://doi.org/10.1016/j.rhisph.2017.04.013
  61. Costerousse B, Schonholzer-Mauclaire L, Frossard E, Thonar C. 2017. Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl. Environ. Microbiol. 84: e01715-01717.
  62. Desai S, Kumar G, Sultana U, Pinisetty S, Hassan S, Amalraj E, et al. 2012. Potential microbial candidate strains for management of nutrient requirements of crops. Afr. J. Microbiol. Res. 6: 3924-3931.
  63. Di Simine CD, Sayer JA, Gadd GM. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol .Fertil. Soils. 28: 87-94. https://doi.org/10.1007/s003740050467
  64. Costa ACAd, Duta FP. 2001. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis. Braz. J. Microbiol. 32: 1-5. https://doi.org/10.1590/S1517-83822001000100001
  65. Mumtaz MZ, Ahmad M, Jamil M, Hussain T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 202: 51-60. https://doi.org/10.1016/j.micres.2017.06.001
  66. Hina J, Akhtar MJ, Asghar HN, Amer J. 2018. Screening of zinc solubilizing bacteria and their potential to increase grain concentration in wheat (Triticum aestivum). Int. J. Agric. Biol. 20: 547-553. https://doi.org/10.17957/IJAB/15.0514
  67. Khamna S, Yokota A, Peberdy JF, Lumyong S. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eur. J. Biosci. 4: 23-32.
  68. Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L. 2020. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa willd. Microorganisms 8: 948.
  69. Chaiharn M, Pathom-aree W, Sujada N, Lumyong S. 2018. Characterization of phosphate solubilizing Streptomyces as a biofertilizer. Chiang Mai J. Sci. 45: 701-716.
  70. Chouyia FE, Romano I, Fechtali T, Fagnano M, Fiorentino N, Visconti D, et al. 2020. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front. Plant Sci. 11: 1137.
  71. Hussain A, Wang X, Zahir ZA, Mahmood K, Mumtaz MZ, Saqib M, et al. 2022. Potential of integrated use of Bacillus sp. AZ6 and organic waste for zinc bio-activation to improve physiological attributes of maize. Pol. J. Environ. Stud. 31: 1645-1652. https://doi.org/10.15244/pjoes/142387