과제정보
This study was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1A6A1A10039823 and NRF-2019R1A2C1008066), and was supported by RP-Grant 2020 of Ewha Womans University.
참고문헌
- Jones ME, Lipmann F. 1960. Chemical and enzymatic synthesis of carbamyl phosphate. Proc. Natl. Acad. Sci. USA 4: 1194-1205. https://doi.org/10.1073/pnas.46.9.1194
- Jones ME. 1963. Carbamyl phosphate: many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science 140: 1373-1379. https://doi.org/10.1126/science.140.3574.1373
- Shi D, Caldovic L, Tuchman M. 2018. Sources and fates of carbamyl phosphate: a labile energy-rich molecule with multiple facets. Biology 7: 34.
- Walsh CT, Tu BP, Tang Y. 2018. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118: 1460-1494. https://doi.org/10.1021/acs.chemrev.7b00510
- Trotta PP, Burt ME, Haschemeyer RH, Meister A. 1971. Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. Natl. Acad. Sci. USA 68: 2599-2603. https://doi.org/10.1073/pnas.68.10.2599
- Purcarea C, Simon V, Prieur D, Herve G. 1996. Purification and characterization of carbamoyl-phosphate synthetase from the deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. Eur. J. Biochem. 236: 189-199. https://doi.org/10.1111/j.1432-1033.1996.00189.x
- Durbecq V, Legrain C, Roovers M, Pierard A, Glansdorff N. 1997. The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc. Natl. Acad. Sci. USA 94: 12803-12808. https://doi.org/10.1073/pnas.94.24.12803
- Ramon-Maiques S, Marina A, Uriarte M, Fita I, Rubio V. 2000. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. J. Mol. Biol. 299: 463-476. https://doi.org/10.1006/jmbi.2000.3779
- Luthi E, Mercenier A, Haas D. 1986. The arcABC operon required for fermentative growth of Pseudomonas aeruginosa on arginine: Tn5-751-assisted cloning and localization of structural genes. J. Gen. Microbiol. 132: 2667-2675.
- Barcelona-Andres B, Marina A, Rubio V. 2002. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol. 184: 6289-6300. https://doi.org/10.1128/JB.184.22.6289-6300.2002
- Noens EE, Lolkema JS. 2017. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers. Microbiologyopen 6: e00412.
- Majsnerowska M, Noens EEE, Lolkema JS. 2018. Arginine and citrulline catabolic pathways encoded by the arc gene cluster of Lactobacillus brevis ATCC 367. J. Bacteriol. 200: e00182-18.
- Simon JP, Stalon V. 1982. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J. Bacteriol. 152: 676-681. https://doi.org/10.1128/jb.152.2.676-681.1982
- Griswold AR, Jameson-Lee M, Burne RA. 2006. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J. Bacteriol. 188: 834-841. https://doi.org/10.1128/JB.188.3.834-841.2006
- Li Y, Jin Z, Yu X, Allewell NM, Tuchman M, Shi D. 2011. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase. Proteins 79: 2327-2334. https://doi.org/10.1002/prot.23043
- Kim NY, Lee YJ, Park JW, Kim SN, Kim EY, Kim Y, et al. 2021. An Escherichia coli FdrA variant derived from syntrophic coculture with a methanogen increases succinate production due to changes in allantoin degradation. mSphere 6: e0065421.
- Smith AA, Belda E, Viari A, Medigue C, Vallenet D. 2012. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. PLoS Comput. Biol. 8: e1002540.
- Miller JH. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. J. Bacteriol. 119: 736-747. https://doi.org/10.1128/jb.119.3.736-747.1974
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Hao Lin, En-Ze Deng, Hui Ding, Wei Chen, Kuo-Chen Chou. 2014. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 42: 12961-12972. https://doi.org/10.1093/nar/gku1019
- Rahman MS, Aktar U, Jani MR, Shatabda S. 2019. iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol Genet. Genomics 294: 69-84. https://doi.org/10.1007/s00438-018-1487-5
- Valentine RC, Bojanowski R, Gaudy E, Wolfe RS. 1962. Mechanism of the allantoin fermentation. J. Biol. Chem. 237: 2271-2277. https://doi.org/10.1016/S0021-9258(19)63431-9
- Chen CZ, Southall N, Galkin A, Lim K, Marugan JJ, Kulakova L, et al. 2012. A homogenous luminescence assay reveals novel inhibitors for giardia lamblia carbamate kinase. Curr. Chem. Genomics 6: 93-102. https://doi.org/10.2174/1875397301206010093
- Abdelal AT. 1979. Arginine catabolism by microorganisms. Annu. Rev. Microbiol. 33: 139-168. https://doi.org/10.1146/annurev.mi.33.100179.001035
- Hering S, Sieg A, Kreikemeyer B, Fiedler T. 2013. Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49. Protein Expr. Purif. 91: 61-68. https://doi.org/10.1016/j.pep.2013.07.002
- Marina A, Uriarte M, Barcelona B, Fresquet V, Cervera J, Rubio V. 1998. Carbamate kinase from Enterococcus faecalis and Enterococcus faecium--cloning of the genes, studies on the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-L-glutamate kinase. Eur. J. Biochem. 253: 280-291. https://doi.org/10.1046/j.1432-1327.1998.2530280.x
- Abdelal AT, Bibb WF, Nainan O. 1982. Carbamate kinase from Pseudomonas aeruginosa: purification, characterization, physiological role, and regulation. J. Bacteriol. 151: 1411-1419. https://doi.org/10.1128/jb.151.3.1411-1419.1982
- Manca de Nadra MC, Nadra Chaud CA, Pesce de Ruiz Holgado A, Oliver G. 1986. Carbamate kinase of Lactobacillus buchneri NCDO110. I. Purification and properties. Biotechnol. Appl. Biochem. 8: 46-52.
- Galkin A, Kulakova L, Wu R, Nash TE, Dunaway-Mariano D, Herzberg O. 2010. X-ray structure and characterization of carbamate kinase from the human parasite Giardia lamblia. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66: 386-390. https://doi.org/10.1107/S1744309110004665
- Minotto L, Tutticci EA, Bagnara AS, Schofield PJ, Edwards MR. 1999. Characterisation and expression of the carbamate kinase gene from Giardia intestinalis. Mol. Biochem. Parasitol. 98: 43-51. https://doi.org/10.1016/S0166-6851(98)00141-8
- Minotto L, Edwards MR, Bagnara AS. 2000. Trichomonas vaginalis: characterization, expression, and phylogenetic analysis of a carbamate kinase gene sequence. Exp. Parasitol. 95: 54-62. https://doi.org/10.1006/expr.2000.4507
- Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J. 1999. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J. Bacteriol. 181: 7479-7484. https://doi.org/10.1128/JB.181.24.7479-7484.1999
- Manca de Nadra MC, Pesce de Ruiz Holgado AA, Oliver G. 1987. Carbamate kinase of Lactobacillus buchneri NCDO110. II. Kinetic studies and reaction mechanism. Biotechnol. Appl. Biochem. 9: 141-145.
- Stebbins JW, Xu W, Kantrowitz ER. 1989. Three residues involved in binding and catalysis in the carbamyl phosphate binding site of Escherichia coli aspartate transcarbamylase. Biochemistry 28: 2592-600. https://doi.org/10.1021/bi00432a037
- Kuo LC, Lipscomb WN, Kantrowitz ER. 1982. Zn(II)-induced cooperativity of Escherichia coli ornithine transcarbamoylase. Proc. Natl. Acad. Sci. USA 79: 2250-2254. https://doi.org/10.1073/pnas.79.7.2250
- Baur H, Tricot C, Stalon V, Haas D. 1990. Converting catabolic ornithine carbamoyltransferase to an anabolic enzyme. J. Biol. Chem. 265: 14728-14731. https://doi.org/10.1016/S0021-9258(18)77171-8