Acknowledgement
This research was supported by a grant from the World Institute of Kimchi (KE2202-1) and funding from the Ministry of Science, Republic of Korea.
References
- Park KY, Jeong JK, Lee YE, Daily III JW. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
- Lee SH, Jung JY, Jeon CO. 2015. Source tracking and succession of kimchi lactic acid bacteria during fermentation. J. Food Sci. 80: M1871-M1877. https://doi.org/10.1111/1750-3841.12948
- Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. 2015. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 25: 559-568. https://doi.org/10.4014/jmb.1501.01019
- Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Kim HR, Lee JH. 2013. Selection of acid-tolerant and hetero-fermentative lactic acid bacteria producing non-proteinaceous antibacterial substances for kimchi fermentation. Microbiol. Biotechnol. Lett. 41: 119-127. https://doi.org/10.4014/kjmb.1211.11005
- Lee KH, Lee JH. 2011. Isolation of Leuconostoc and Weissella species inhibiting the growth of Lactobacillus sakei from kimchi. Microbiol. Biotechnol. Lett. 39: 175-181.
- De Vuyst L. 2000. Technology aspects related to the application of functional starter cultures. Food Technol. Biotechnol. 38: 105-112.
- Uerlings J, Schroyen M, Willems E, Tanghe S, Bruggeman G, Bindelle J, et al. 2020. Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J. Funct. Foods. 67: 103855.
- Marzioni D, Banita M, Felici A, Paradinas FJ, Newlands E, De Nictolis M, et al. 2001. Expression of ZO-1 and occludin in normal human placenta and in hydatidiform moles. Mol. Hum. Reprod. 7: 279-285. https://doi.org/10.1093/molehr/7.3.279
- Zihni C, Mills C, Matter K, Balda MS. 2016. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17: 564-580. https://doi.org/10.1038/nrm.2016.80
- Pastorelli L, De Salvo C, Mercado JR, Vecchi M, Pizarro TT. 2013. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front. Immunol. 4: 280.
- Rose EC, Odle J, Blikslager AT, Ziegler AL. 2021. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. Int. J. Mol. Sci. 22: 6729.
- Jung MY, Lee SH, Lee M, Song JH, Chang JY. 2017. Lactobacillus allii sp. nov. isolated from scallion kimchi. Int. J. Syst. Evol. Microbiol. 67: 4936-4942. https://doi.org/10.1099/ijsem.0.002327
- Lee M, Song JH, Park JM, Chang JY. 2019. Strain-specific detection of kimchi starter Leuconostoc mesenteroides WiKim33 using multiplex PCR. J. Korean Soc. Food Cult. 34: 208-216.
- Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. 1991. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods. 142: 257-265. https://doi.org/10.1016/0022-1759(91)90114-U
- Lin TY, Fan CW, Maa MC, Leu TH. 2015. Lipopolysaccharide-promoted proliferation of Caco-2 cells is mediated by c-Src induction and ERK activation. Biomedicine 5: 5.
- Mahaseth T, Kuzminov A. 2017. Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes. Mutat. Res. Rev. Mutat. Res. 773: 274-281. https://doi.org/10.1016/j.mrrev.2016.08.006
- Baiano A, Del Nobile MA. 2016. Antioxidant compounds from vegetable matrices: biosynthesis, occurrence, and extraction systems. Crit. Rev. Food Sci. Nutr. 56: 2053-2068. https://doi.org/10.1080/10408398.2013.812059
- Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. 2017. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int. J. Mol. Sci. 18: 96.
- Nakagawa H, Miyazaki T. 2017. Beneficial effects of antioxidative lactic acid bacteria. AIMS Microbiol. 3: 1-7. https://doi.org/10.3934/microbiol.2017.1.1
- Feng T, Wang J. 2020. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes 12: 1801944.
- Livinska O, Ivaschenko O, Garmasheva I, Kovalenko N. 2016. The screening of lactic acid bacteria with antioxidant properties. AIMS Microbiol. 2: 447-459. https://doi.org/10.3934/microbiol.2016.4.447
- Figueroa-Gonzalez I, Quijano G, Ramirez G, Cruz-Guerrero A. 2011. Probiotics and prebiotics-perspectives and challenges. J. Sci. Food Agric. 91: 1341-1348. https://doi.org/10.1002/jsfa.4367
- Lee M, Song JH, Choi EJ, Yun YR, Lee KW, Chang JY. 2021. UPLC-QTOF-MS/MS and GC-MS characterization of phytochemicals in vegetable juice fermented using lactic acid bacteria from kimchi and their antioxidant potential. Antioxidants 10: 1761.
- Khoshbin K, Camilleri M. 2020. Effects of dietary components on intestinal permeability in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 319: G589-G608. https://doi.org/10.1152/ajpgi.00245.2020
- Nighot M, Al-Sadi R, Guo S, Rawat M, Nighot P, Watterson MD, et al. 2017. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression. Am. J. Pathol. 187: 2698-2710. https://doi.org/10.1016/j.ajpath.2017.08.005
- Rao RK, Baker RD, Baker SS, Gupta A, Holycross M. 1997. Oxidant-induced disruption of intestinal epithelial barrier function: role of protein tyrosine phosphorylation. Am. J. Physiol. 273: G812-G823.
- Wijeratne SS, Cuppett SL, Schlegel V. 2005. Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J. Agric. Food Chem. 53: 8768-8774. https://doi.org/10.1021/jf0512003
- Bannerman DD, Sathyamoorthy M, Goldblum SE. 1998. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J. Biol. Chem. 273: 35371-35380. https://doi.org/10.1074/jbc.273.52.35371
- Guo S, Al-Sadi R, Said HM, Ma TY. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol. 182: 375-387. https://doi.org/10.1016/j.ajpath.2012.10.014
- Qin HL, Shen TY, Gao ZG, Fan XB, Hang XM, Jiang YQ, et al. 2005. Effect of lactobacillus on the gut microflora and barrier function of the rats with abdominal infection. World J. Gastroenterol. 11: 2591-2596. https://doi.org/10.3748/wjg.v11.i17.2591
- Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. 2010. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 10: 316.
- Zhao Y, Yu X, Jia R, Yang R, Rui Q, Wang D. 2015. Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci. Rep. 5: 17233.
- Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. 2001. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121: 580-591. https://doi.org/10.1053/gast.2001.27224
- Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141: 769-776. https://doi.org/10.3945/jn.110.135657
- Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, et al. 2004. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc. Res. 68: 231-238. https://doi.org/10.1016/j.mvr.2004.07.005
- Sheth P, Samak G, Shull JA, Seth A, Rao R. 2009. Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers. Biochem. J. 421: 59-70. https://doi.org/10.1042/BJ20081951
- Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. 2009. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J. Virol. 83: 2011-2014. https://doi.org/10.1128/JVI.01888-08
- Benedicto I, Molina-Jimenez F, Barreiro O, Maldonado-Rodriguez A, Prieto J, Moreno-Otero R, et al. 2008. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology 48: 1044-1053. https://doi.org/10.1002/hep.22465
- Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, et al. 1999. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. 147: 195-204. https://doi.org/10.1083/jcb.147.1.195
- Lapointe TK, O'Connor PM, Jones NL, Menard D, Buret AG. 2010. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell Microbiol. 12: 692-703. https://doi.org/10.1111/j.1462-5822.2010.01429.x
- Kirschner N, Poetzl C, von den Driesch P, Wladykowski E, Moll I, Behne MJ, et al. 2009. Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines. Am. J. Pathol. 175: 1095-1106. https://doi.org/10.2353/ajpath.2009.080973
- Chen M, Liu Y, Xiong S, Wu M, Li B, Ruan Z, et al. 2019. Dietary l-tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model. Food Funct. 10: 2390-2398. https://doi.org/10.1039/C9FO00123A