DOI QR코드

DOI QR Code

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer (Department of Botany and Microbiology, Faculty of Science, Sohag University) ;
  • Sanaa M. F. Gad El-Rab (Department of Botany and Microbiology, Faculty of Science, Assuit University) ;
  • Eman M. Halawani (Department of Biology, College of Science, Taif University) ;
  • Ameen M. Niaz (Department of Biology, College of Science, Taif University) ;
  • Mohammed S. Bamaga (Department of Molecular Pathology, Al-Hada Armed Forces Hospital)
  • Received : 2022.08.04
  • Accepted : 2022.10.25
  • Published : 2022.12.28

Abstract

Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Keywords

Acknowledgement

The authors would like to express their gratitude to the Taif University Researchers Supporting Project (No. TURSP-2020/273), Taif University, Taif, Saudi Arabia. The authors would also like to thank King Faisal Hospital for providing us with the samples.

References

  1. Cheung GY, Bae JS, Otto M. 2021. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12: 547-569. https://doi.org/10.1080/21505594.2021.1878688
  2. Dulon M, Haamann F, Peters C, Schablon A, Nienhaus A. 2011. MRSA prevalence in European healthcare settings: a review. BMC Infect. Dis. 11: 138.
  3. Carvalho KS, Mamizuka EM, Gontijo Filho PP. 2010. Methicillin/Oxacillin-resistant Staphylococcus aureus as a hospital and public health threat in Brazil. Br. J. Infect. Dis. 14: 71-76. https://doi.org/10.1016/S1413-8670(10)70014-3
  4. Tiemersma EW, Bronzwaer SL, Lyytikainen O, Degener JE, Schrijnemakers P, Bruinsma N, et al. 2004. Methicillin-resistant Staphylococcus aureus in Europe, 1999-2002. Emerg. Infect. Dis. 10: 1627-1634. https://doi.org/10.3201/eid1009.040069
  5. Manchanda V, Suman U, Singh N. 2018. Implementing infection prevention and control programs when resources are limited. Curr. Treat. Options Infect. Dis. 10: 28-39. https://doi.org/10.1007/s40506-018-0142-3
  6. Chaberny IF, Sohr D, Ruden H, Gastmeier P. 2007. Development of a surveillance system for methicillin-resistant Staphylococcus aureus in German hospitals. Infect. Control Hosp. Epidemiol. 28: 446-452. https://doi.org/10.1086/513444
  7. Salah DM, Abdelhalim EF, Elkholy RM. 2020. Evaluation of different methods for detection of hospital-acquired methicillin resistant Staphylococcus aureus. Egypt. J. Med. Microbiol. 29: 41-46. https://doi.org/10.21608/ejmm.2020.250015
  8. Jappe U, Heuck D, Strommenger B, Wendt C, Werner G, Altmann D, et al. 2008. Staphylococcus aureus in dermatology outpatients with special emphasis on community-associated methicillin-resistant strains. J. Investig. Dermatol. 128: 2655-2664. https://doi.org/10.1038/jid.2008.133
  9. Lakhundi S, Zhang K. 2018. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31: e00020-18.
  10. Li T, Yang J, Ali Z, Wang Z, Mou X, He N, et al. 2017. Synthesis of aptamer-functionalized Ag nanoclusters for MCF-7 breast cancer cells imaging. Sci. China Chem. 60: 370-376. https://doi.org/10.1007/s11426-016-0159-2
  11. Lin P, Wang FQ, Li CT, Yan ZF. 2020. An enhancement of antibacterial activity and synergistic effect of biosynthesized silver nanoparticles by Eurotium cristatum with various antibiotics. Biotechnol. Bioprocess Eng. 25: 450-458. https://doi.org/10.1007/s12257-019-0506-7
  12. Enan ET, Ashour AA, Basha S, Felemban NH, Gad El-Rab SMF. 2021. Antimicrobial activity of biosynthesized silver nanoparticles, amoxicillin, and glass-ionomer cement against Streptococcus mutans and Staphylococcus aureus. Nanotechnology 32: 215101.
  13. Van Enk RA, Thompson KD. 1992. Use of a primary isolation medium for recovery of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 30: 504-505. https://doi.org/10.1128/jcm.30.2.504-505.1992
  14. Brenner DJ, Krieg NR, Staley JT, Garrity Sc D. 2005. GM, Boone DR, De Vos P, Goodfellow M, Rainey FA, Schleifer KH, editors. Bergey's Manual® of Systematic Bacteriology, Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria.
  15. Mahon CR, Lehman DC, Manuselis G. 2011. Textbook of diagnostic microbiology. pp. 1395. 4rd ed. Maryland Heights: Mo. Saunders/Elsevier.
  16. Weinstein MP, Lewis JS. 2020. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol. 58: e01864-19.
  17. Gad El-Rab SM, Abo-Amer AE, Asiri AM. 2020. Biogenic synthesis of ZnO nanoparticles and its potential use as antimicrobial agent against multidrug-resistant pathogens. Curr. Microbiol. 77: 1767-1779. https://doi.org/10.1007/s00284-020-01991-8
  18. Crosby HA, Kwiecinski J, Horswill AR. 2016. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv. Appl. Microbiol. 96: 1-41. https://doi.org/10.1016/bs.aambs.2016.07.018
  19. Bannerman T L. 2003. Staphylococci and other catalase positive cocci that grow aerobically. Manual of clinical microbiology. pp. 384-404.
  20. Ma XX, Sun DD, Wang S, Wang ML, Li M, Shang H, et al. 2011. Nasal carriage of methicillin-resistant Staphylococcus aureus among preclinical medical students: epidemiologic and molecular characteristics of methicillin-resistant S. aureus clones. Diagn. Microbiol. Infect. Dis. 70: 22-30. https://doi.org/10.1016/j.diagmicrobio.2010.12.004
  21. Chen CS, Chen CY, Huang YC. 2012. Nasal carriage rate and molecular epidemiology of methicillin-resistant Staphylococcus aureus among medical students at a Taiwanese university. Int. J. Infect. Dis. 16: e799-e803. https://doi.org/10.1016/j.ijid.2012.07.004
  22. Bischoff WE, Wallis ML, Tucker KB, Reboussin BA, Sherertz RJ. 2004. Staphylococcus aureus nasal carriage in a student community prevalence, clonal relationships, and risk factors. Infect. Control Hosp. Epidemiol. 25: 485-491. https://doi.org/10.1086/502427
  23. Guclu E, Yavuz T, Tokmak A, Behcet M, Karali E, Ozturk O, et al. 2007. Nasal carriage of pathogenic bacteria in medical students: effects of clinic exposure on prevalence and antibiotic susceptibility. Eur. Arch. Ootorhinolaryngol. 264: 85-88. https://doi.org/10.1007/s00405-006-0160-5
  24. Shahkarami F, Rashki A, Ghalehnoo ZR. 2014. Microbial susceptibility and plasmid profiles of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Jundishapur J. Microbiol. 7: e16984.
  25. Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GES, et al. 2020. Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect. Drug Resist. 13: 3255-3265. https://doi.org/10.2147/IDR.S272733
  26. Mohajeri P, Izadi B, Rezaei M, Farahani A. 2013. Frequency distribution of hospital-acquired MRSA nasal carriage among hospitalized patients in West of Iran. Jundishapur J. Microbiol. 6: e9076.
  27. Junnila J, Hirvioja T, Rintala E, Auranen K, Rantakokko-Jalava K, Silvola J, et al. 2020. Changing epidemiology of methicillinresistant Staphylococcus aureus in a low endemicity area-new challenges for MRSA control. Eur. J. Clin. Microbiol. Infect. Dis. 39: 2299-2307. https://doi.org/10.1007/s10096-020-03824-9
  28. Askarian M, Zeinalzadeh A, Japoni A, Alborzi A, Memish ZA. 2009. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus and its antibiotic susceptibility pattern in healthcare workers at Namazi Hospital, Shiraz, Iran. Int. J. Infect. Dis. 13: e241-e247. https://doi.org/10.1016/j.ijid.2008.11.026
  29. Bukhari SZ, Ahmed S, Zia N. 2011. Antimicrobial susceptibility pattern of Staphylococcus aureus on clinical isolates and efficacy of laboratory tests to diagnose MRSA: a multi-centre study. J. Ayub Med. Coll. Abbottabad 23: 139-142.
  30. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  31. Rahimi F, Bouzari M, Katouli M, Pourshafie M. 2012. Prophage typing of methicillin resistant Staphylococcus aureus isolated from a tertiary care hospital in Tehran, Iran. Jundishapur J. Microbiol. 6: 80-85. https://doi.org/10.5812/jjm.4616
  32. Saderi H, Oulia P, Jalali NM. 2009. Difference in epidemiology and antibiotic susceptibility of methicillin resistant and methicillin susceptible Staphylococcus aureus isolates. Iranian J. Clin. Infect. Dis. 4: 219-223.
  33. Talwar A, Saxena S, Kumar A. 2016. Screening for detection of methicillin-resistant Staphylococcus aureus in Doon Valley Hospitals, Uttarakhand. J. Environ. Biol. 37: 247-251.
  34. Yam WC, Siu GK, Ho PL, Ng TK, Que TL, Yip KT, et al. 2013. Evaluation of the Light Cycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test for detection of MRSA nasal colonization. J. Clin. Microbiol. 51: 2869-2874. https://doi.org/10.1128/JCM.00488-13
  35. Adesida SA, Okeyide AO, Abioye A, Omolopo I, Egwuatu TO, Amisu KO, et al. 2016. Nasal Carriage of Methicillin-resistant Staphylococcus aureus among Elderly People in Lagos, Nigeria. Avicenna J. Clin. Microbiol. Infect. 3: e39272.
  36. Chambers HF. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10: 781-791. https://doi.org/10.1128/CMR.10.4.781
  37. Tayfour MA, Eris FN, Alanazi AR. 2005. Comparison of antibiotic susceptibility tests, plasmid profiles and restriction enzyme analysis of plasmid DNA of methicillin susceptible and resistant-Staphylococcus aureus strains isolated from intensive care units. Saudi Med.J. 26: 57-63.
  38. Caddick JM, Hilton AC, Rollason J, Lambert PA, Worthington T, Elliott TS. 2005. Molecular analysis of methicillin-resistant Staphylococcus aureus reveals an absence of plasmid DNA in multidrug-resistant isolates. FEMS Immunol. Med. Microbiol. 44: 297-302. https://doi.org/10.1016/j.femsim.2004.12.014
  39. Gad El-Rab SMF, Halawani EM, Alzahrani SSS. 2021. Biosynthesis of silver nano-drug using Juniperus excelsa and its synergistic antibacterial activity against multidrug-resistant bacteria for wound dressing applications. 3 Biotech 11: 255.
  40. Fadlallah S, Gad El-Rab SMF, Halwani EM. 2020. Innovative Nanoporous Titania surface with stabilized antimicrobial Agnanoparticles via Salvadora persica L. roots (Miswak) extract for dental applications. BioNanoScience 10: 998-1009. https://doi.org/10.1007/s12668-020-00765-7
  41. Halawani EM, Hassan AM, Gad El-Rab SMF. 2020. Nanoformulation of biogenic cefotaxime-conjugated-silver nanoparticles for enhanced antibacterial efficacy against multidrug-resistant bacteria and anticancer studies. Int. J. Nanomed. 15: 889-1901.