Acknowledgement
This work was supported by the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea (Project No. PJ014974).
References
- MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373: 61-65. https://doi.org/10.1126/science.abg5433
- Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359
- Son HF, Cho IJ, Joo S, Seo H, Sagong H-Y, Choi SY, et al. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9: 3519-3526. https://doi.org/10.1021/acscatal.9b00568
- Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580: 216-219. https://doi.org/10.1038/s41586-020-2149-4
- Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3: e1700782.
- Danso D, Chow J, Streit WR. 2019. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 85: e01095-01019.
- Montazer Z, Habibi Najafi MB, Levin DB. 2020. Challenges with verifying microbial degradation of polyethylene. Polymers 12: 123.
- Ghatge S, Yang Y, Ahn JH, Hur HG. 2020. Biodegradation of polyethylene: a brief review. Appl. Biol. Chem. 63: 27.
- Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. 1995. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J. Appl. Polym. Sci. 56: 1789-1796. https://doi.org/10.1002/app.1995.070561309
- Kim SK, Kim JS, Lee H, Lee HJ. 2021. Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. J. Hazard. Mater. 403: 123997.
- Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Troger J, et al. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550: 690-705. https://doi.org/10.1016/j.scitotenv.2016.01.153
- Briassoulis D, Hiskakis M, Babou E. 2013. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag. 33: 1516-1530.
- Yenice MK, Dogruparmak SC, Durmusoglu E, Ozbay B, Oz HO. 2011. Solid waste characterization of Kocaeli. Pol. J. Environ. Stud. 20: 479-484.
- Zeng Y, Trauth KM, Peyton RL, Banerji SK. 2005. Characterization of solid waste disposed at Columbia Sanitary Landfill in Missouri. Waste Manag. Res. 23: 62-71. https://doi.org/10.1177/0734242X05050995
- Gajendiran A, Krishnamoorthy S, Abraham J. 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech. 6: 52.
- Pramila R, Ramesh KV. 2011. Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J. Microbiol. Biotechnol. Res. 1: e136.
- Palmisano AC, Pettigrew CA. 1992. Biodegradability of plastics. BioScience 42: 680-685. https://doi.org/10.2307/1312174
- Park SY, Kim CG. 2019. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222: 527-533. https://doi.org/10.1016/j.chemosphere.2019.01.159
- Zettler ER, Mincer TJ, Amaral-Zettler LA. 2013. Life in the "plastisphere": Microbial communities on plastic marine debris. Environ. Sci. Technol. 47: 7137-7146. https://doi.org/10.1021/es401288x
- Puglisi E, Romaniello F, Galletti S, Boccaleri E, Frache A, Cocconcelli P. 2019. Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Sci. Rep-UK 9: 14138.
- MacLean J, Mayanna S, Benning LG, Horn F, Bartholomaus A, Wiesner Y, et al. 2021. The terrestrial plastisphere: diversity and polymer-colonizing potential of plastic-associated microbial communities in soil. Microorganisms 9: 1876.
- Wright RJ, Langille MGI, Walker TR. 2021. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 15: 789-806. https://doi.org/10.1038/s41396-020-00814-9
- Wang C, Wang L, Ok YS, Tsang DCW, Hou D. 2022. Soil plastisphere: exploration methods, influencing factors, and ecological insights. J. Hazard. Mater. 430: 128503.
- Sandt C, Waeytens J, Deniset-Besseau A, Nielsen-Leroux C, Rejasse A. 2021. Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochim. Acta A. 258: 119841.
- Herlemann DPR, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea. ISME J. 5: 1571.
- White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Sninski JJ, White TJ (eds.), PCR-protocols a guide to methods and applications, Ed. Academic Press, San Diego
- Illumina. 2013. 16S metagenomic sequencing library preparation protocol: Preparing 16S ribosomal RNA gene amplicons for the Illumina MiSeq system. Part no. 15044223 Rev. B. Journal.
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Schloss PD. 2009. A high-throughput DNA sequence aligner for microbial ecology studies. PloS One 4: e8230.
- Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145. https://doi.org/10.1093/nar/gkn879
- Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22: 5271-5277. https://doi.org/10.1111/mec.12481
- Pruesse E, Peplies J, Glockner FO. 2012. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: D590-D596. https://doi.org/10.1093/nar/gks1219
- Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26: 1641-1650. https://doi.org/10.1093/molbev/msp077
- Hamady M, Lozupone C, Knight R. 2009. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27. https://doi.org/10.1038/ismej.2009.97
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Tipton L, Muller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, et al. 2018. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6: 12.
- Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computat. Biol. 11: e1004226.
- Briatte F. 2021. ggnet: functions to plot networkswith ggplot2.
- Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
- Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40: D109-114. https://doi.org/10.1093/nar/gkr988
- RStudio Team. 2018. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. URL http://www.r-studio.com/. Integrated development for R. Rstudio, Boston, MA.
- Gulmine JV, Janissek PR, Heise HM, Akcelrud L. 2002. Polyethylene characterization by FTIR. Polym. Test. 21: 557-563. https://doi.org/10.1016/S0142-9418(01)00124-6
- Chabira SF, Benhorma HA, Hiver JM, Godard O, Poncot M, Royaud I, et al. 2019. Impact of the structural changes on the fracture behavior of naturally weathered low-density polyethylene (LDPE) films. J. Macromol. Sci. B. 58: 400-424. https://doi.org/10.1080/00222348.2019.1565126
- Guadagno L, Naddeo C, Vittoria V, Camino G, Cagnani C. 2001. Chemical and morphologial modifications of irradiated linear low density polyethylene (LLDPE). Polym. Degrad. Stabil. 72: 175-186. https://doi.org/10.1016/S0141-3910(01)00024-6
- Gulmine JV, Janissek PR, Heise HM, Akcelrud L. 2003. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stabil. 79: 385-397. https://doi.org/10.1016/S0141-3910(02)00338-5
- Hamzah M, Khenfouch M, Rjeb A, Sayouri S, Houssaini DS, Darhouri M, et al. 2018. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation. J. Phys. Conf. Ser. 984: 012010.
- Grause G, Chien MF, Inoue C. 2020. Changes during the weathering of polyolefins. Polym. Degrad. Stabil. 181: 109364.
- Wang X, Cao A, Zhao G, Zhou C, Xu R. 2017. Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag. 66: 79-87.
- Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2011. GenBank. Nucleic Acids Res. 39: D32-D37. https://doi.org/10.1093/nar/gkq1079
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 66: 9-37. https://doi.org/10.1099/ijsem.0.000702
- Jones D, Keddie RM. 2006. The Genus Arthrobacter, pp. 945-960. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes, Ed. Springer New York, New York, NY.
- Guo X, Xie C, Wang L, Li Q, Wang Y. 2019. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environ. Sci. Pollut. Res. Int. 26: 8429-8443. https://doi.org/10.1007/s11356-019-04358-0
- Kallimanis A, Kavakiotis K, Perisynakis A, Sproer C, Pukall R, Drainas C, et al. 2009. Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int. J. Syst. Evol. Microbiol. 59: 275-279. https://doi.org/10.1099/ijs.0.000984-0
- Abdulrasheed M, Zakaria NN, Ahmad Roslee AF, Shukor MY, Zulkharnain A, Napis S, et al. 2020. Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. from Antarctica. Antarct. Sci. 32: 341-353. https://doi.org/10.1017/S0954102020000206
- Fatima S, Zaman M, Hamid B, Bashir F, Baba ZA, Sheikh TA. 2022. Chapter 4 - Bioremediation of contaminated soils by bacterial biosurfactants, pp. 67-85. In Gupta PK, Yadav B, Himanshu SK (eds.), Advances in Remediation Techniques for Polluted Soils and Groundwater, Ed. Elsevier, Amsterdam, Netherlands.
- Goel R, Zaidi MGH, Soni R, Lata K, Shouche YS. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegr. 61: 167-172. https://doi.org/10.1016/j.ibiod.2007.07.001
- Takehara I, Kato D-I, Takeo M, Negoro S. 2017. Draft genome sequence of the nylon oligomer-degrading bacterium Arthrobacter sp. Strain KI72. Genome Announc. 5: e00217-00217.
- Albertsson AC, Erlandsson B, Hakkarainen M, Karlsson S. 1998. Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J. Environ. Polym. Degr. 6: 187-195. https://doi.org/10.1023/A:1021873631162
- Han YN, Wei M, Han F, Fang C, Wang D, Zhong YJ, et al. 2020. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms 8: 1979.
- Yi M, Zhou S, Zhang L, Ding S. 2021. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Enivron. Res. 93: 24-32. https://doi.org/10.1002/wer.1327
- Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G. 2011. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int. Biodeter. Biodegr. 65: 757-767. https://doi.org/10.1016/j.ibiod.2011.04.007
- Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, et al. 2011. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62: 1683-1692. https://doi.org/10.1016/j.marpolbul.2011.06.004
- Luo G, Jin T, Zhang H, Peng J, Zuo N, Huang Y, et al. 2022. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China. J. Hazard. Mater. 422: 126865.
- Okurowska K, Karunakaran E, Al-Farttoosy A, Couto N, Pandhal J. 2021. Adapting the algal microbiome for growth on domestic landfill leachate. Bioresour. Technol. 319: 124246.
- Wang P, Song T, Bu J, Zhang Y, Liu J, Zhao J, et al. 2022. Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? Sci. Total Environ. 824: 153884.
- Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, et al. 2019. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep-UK 9: 3403.
- Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, et al. 2012. Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS One 7: e34847.
- Lee JS, Nam B, Lee HB, J. CY. 2018. Molecular phylogeny and morphology reveal the underestimated diversity of Mortierella (Mortierellales) in Korea. Kor. J. Mycol. 46: 375-382.
- De Tender C, Devriese LI, Haegeman A, Maes S, Vangeyte J, Cattrijsse A, et al. 2017. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ. Sci. Technol. 51: 7350-7360. https://doi.org/10.1021/acs.est.7b00697
- Lacerda ALdF, Proietti MC, Secchi ER, Taylor JD. 2020. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol. Ecol. 29: 1903-1918. https://doi.org/10.1111/mec.15444
- Gao B, Yao H, Li Y, Zhu Y. 2021. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environ. Toxicol. Chem. 40: 352-365. https://doi.org/10.1002/etc.4916
- Cowan AR, Costanzo CM, Benham R, Loveridge EJ, Moody SC. 2022. Fungal bioremediation of polyethylene: challenges and perspectives. J. Appl. Microbiol. 132: 78-89. https://doi.org/10.1111/jam.15203
- Sanchez C. 2020. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 40: 107501.
- Song L, Wang Y, Tang W, Lei Y. 2015. Bacterial community diversity in municipal waste landfill sites. Appl. Microbiol. Biotechnol. 99: 7745-7756. https://doi.org/10.1007/s00253-015-6633-y
- Ye R, Xu S, Wang Q, Fu X, Dai H, Lu W. 2020. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill. Front. Environ. Sci. Eng. 15: 77.
- Amaral-Zettler LA, Zettler ER, Mincer TJ. 2020. Ecology of the plastisphere. Nat. Rev. Microbiol. 18: 139-151. https://doi.org/10.1038/s41579-019-0308-0
- Viljakainen VR, Hug LA. 2021. New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Comput. Struct. Biotechnol. J. 19: 6191-6200. https://doi.org/10.1016/j.csbj.2021.11.023
- Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, et al. 2021. Plastics and the microbiome: impacts and solutions. Environ. Microbiome. 16: 2.
- Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, et al. 2012. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78: 1556-1562. https://doi.org/10.1128/AEM.06725-11