DOI QR코드

DOI QR Code

Ginseng extract and ginsenosides improve neurological function and promote antioxidant effects in rats with spinal cord injury: A meta-analysis and systematic review

  • Sng, Kim Sia (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Li, Gan (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Zhou, Long-yun (Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital) ;
  • Song, Yong-jia (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Chen, Xu-qing (Department of Otolaryngology, Affiliated Hospital of Nanjing University of Chinese Medicine) ;
  • Wang, Yong-jun (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Yao, Min (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Cui, Xue-jun (Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine)
  • Received : 2020.10.30
  • Accepted : 2021.05.31
  • Published : 2022.01.01

Abstract

Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = -2.19; 95% CI = -3.16 to 1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.

Keywords

Acknowledgement

We thank the National key R & D plan (No. 2018YFC1704302), National Natural Science Foundation of China (No. 81873317, 81930116, 82074454, 8217151915, 81929004) and Shanghai Natural Science Foundation (No. 20ZR1459000) for their financial support.

References

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017;3:17018. https://doi.org/10.1038/nrdp.2017.18
  2. LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. Prog Brain Res 2007;161:13-26. https://doi.org/10.1016/S0079-6123(06)61002-9
  3. Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J Neurosurg Spine 2007;6(3):255-66. https://doi.org/10.3171/spi.2007.6.3.255
  4. Sandrow-Feinberg HR, Houle JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Res 2015;1619:12-21. https://doi.org/10.1016/j.brainres.2015.03.052
  5. Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007;500(2):267-85. https://doi.org/10.1002/cne.21149
  6. Fitzharris M, Cripps RA, Lee BB. Estimating the global incidence of traumatic spinal cord injury. Spinal Cord 2014;52(2):117-22. https://doi.org/10.1038/sc.2013.135
  7. Jazayeri SB, Beygi S, Shokraneh F, Hagen EM, Rahimi-Movaghar V. Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J 2015;24(5):905-18. https://doi.org/10.1007/s00586-014-3424-6
  8. Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 2014;52(2):110-6. https://doi.org/10.1038/sc.2012.158
  9. Barbara-Bataller E, Mendez-Suarez JL, Aleman-Sanchez C, Sanchez-Enriquez J, Sosa-Henriquez M. Change in the profile of traumatic spinal cord injury over 15 years in Spain. Scand J Trauma Resusc Emerg Med 2018;26(1):27. https://doi.org/10.1186/s13049-018-0491-4
  10. Kudo D, Miyakoshi N, Hongo M, Kasukawa Y, Ishikawa Y, Ishikawa N, et al. An epidemiological study of traumatic spinal cord injuries in the fastest aging area in Japan. Spinal Cord 2019;57(6):509-15. https://doi.org/10.1038/s41393-019-0255-7
  11. Tian ZR, Yao M, Zhou LY, Song YJ, Ye J, Wang YJ, et al. Effect of docosahexaenoic acid on the recovery of motor function in rats with spinal cord injury: a meta-analysis. Neural Regen Res 2020;15(3):537-47. https://doi.org/10.4103/1673-5374.266065
  12. Xu BP, Yao M, Li ZJ, Tian ZR, Ye J, Wang YJ, et al. Neurological recovery and antioxidant effects of resveratrol in rats with spinal cord injury: a meta-analysis. Neural Regen Res 2020;15(3):482-90. https://doi.org/10.4103/1673-5374.266064
  13. Zhou LY, Tian ZR, Yao M, Chen XQ, Song YJ, Ye J, et al. Riluzole promotes neurological function recovery and inhibits damage extension in rats following spinal cord injury: a meta-analysis and systematic review. J Neurochem 2019;150(1):6-27. https://doi.org/10.1111/jnc.14686
  14. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience 2016;322:377-97. https://doi.org/10.1016/j.neuroscience.2016.02.034
  15. Nowrouzi B, Assan-Lebbe A, Sharma B, Casole J, Nowrouzi-Kia B. Spinal cord injury: a review of the most-cited publications. Eur Spine J 2017;26(1):28-39. https://doi.org/10.1007/s00586-016-4669-z
  16. Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery 2013;72(Suppl 2):93-105. https://doi.org/10.1227/NEU.0b013e31827765c6
  17. Cote MP, Murray M, Lemay MA. Rehabilitation strategies after spinal cord injury: Inquiry into the mechanisms of success and failure. J Neurotrauma 2017;34(10):1841-57. https://doi.org/10.1089/neu.2016.4577
  18. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812(1-2):119-33. https://doi.org/10.1016/S1570-0232(04)00645-2
  19. Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem Anal 2018;29(4):331-40. https://doi.org/10.1002/pca.2752
  20. Liu Z, Li Y, Li X, Ruan CC, Wang LJ, Sun GZ. The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C. A. Meyer. J Pharm Biomed Anal. 2012;64-65:56-63. https://doi.org/10.1016/j.jpba.2012.02.005
  21. Zhang Q, Yang H, An J, Zhang R, Chen B, Hao DJ. Therapeutic effects of traditional Chinese medicine on spinal cord injury: a promising supplementary treatment in future. Evid Based Complement Alternat Med 2016;2016:8958721.
  22. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. https://doi.org/10.1186/1749-8546-5-20
  23. Wang Y, Liu Q, Xu Y, Zhang Y, Lv Y, Tan Y, et al. Ginsenoside Rg1 protects against oxidative stress-induced neuronal apoptosis through myosin IIA-actin related cytoskeletal reorganization. Int J Biol Sci 2016;12(11):1341-56. https://doi.org/10.7150/ijbs.15992
  24. Liu Q, Kou JP, Yu BY. Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting NF-kappaB activation. Neurochem Int 2011;58(1):119-25. https://doi.org/10.1016/j.neuint.2010.11.004
  25. Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamineinduced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol 2010;242(1):18-28. https://doi.org/10.1016/j.taap.2009.09.009
  26. Wu SD, Xia F, Lin XM, Duan KL, Wang F, Lu QL, et al. Ginsenoside-rd promotes neurite outgrowth of PC12 cells through MAPK/ERK- and PI3K/AKT-Dependent pathways. Int J Mol Sci 2016;17(2).
  27. Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, et al. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE-/- mice via inhibition of apoptosis and enhancing autophagy. Molecules 2018;23(11).
  28. Kang JH, Song KH, Woo JK, Park MH, Rhee MH, Choi C, et al. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum Nutr 2011;66(3):298-305. https://doi.org/10.1007/s11130-011-0242-4
  29. Geng J, Dong J, Ni H, Lee MS, Wu T, Jiang K, et al. Ginseng for cognition. Cochrane Database Syst Rev 2010;12:CD007769.
  30. Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17(2):338-45. https://doi.org/10.1111/ggi.12699
  31. Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia. Exp Brain Res 2015;233(10):2823-31. https://doi.org/10.1007/s00221-015-4352-3
  32. Sun C, Lai X, Huang X, Zeng Y. Protective effects of ginsenoside Rg1 on astrocytes and cerebral ischemic-reperfusion mice. Biol Pharm Bull 2014;37(12):1891-8. https://doi.org/10.1248/bpb.b14-00394
  33. Xu TZ, Shen XY, Sun LL, Chen YL, Zhang BQ, Huang DK, et al. Ginsenoside Rg1 protects against H2O2 induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro. Int J Mol Med 2019;43(2):717-26.
  34. Hou J, Xue J, Wang Z, Li W. Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytother Res 2018;32(12):2531-40. https://doi.org/10.1002/ptr.6193
  35. Kim DH, Kim DW, Jung BH, Lee JH, Lee H, Hwang GS, et al. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2019;43(2):326-34. https://doi.org/10.1016/j.jgr.2018.12.002
  36. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, et al. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152. https://doi.org/10.3389/fphar.2013.00152
  37. Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, et al. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 2019;19(4):2975-98.
  38. Liu XY, Zhou XY, Hou JC, Zhu H, Wang Z, Liu JX, et al. Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol Sin 2015;36(4):421-8. https://doi.org/10.1038/aps.2014.156
  39. Haidich AB. Meta-analysis in medical research. Hippokratia 2010;14(Suppl 1):29-37.
  40. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12(1):1-21. https://doi.org/10.1089/neu.1995.12.1
  41. Barros Filho TE, Molina AE. Analysis of the sensitivity and reproducibility of the Basso, Beattie, bresnahan (BBB) scale in wistar rats. Clinics (Sao Paulo). 2008;63(1):103-8. https://doi.org/10.1590/S1807-59322008000100018
  42. Borges PA, Cristante AF, Barros-Filho TEP, Natalino RJM, Santos GBD, Marcon RM. Standardization of a spinal cord lesion model and neurologic evaluation using mice. Clinics (Sao Paulo). 2018;73:e293. https://doi.org/10.6061/clinics/2018/e293
  43. Scheff SW, Saucier DA, Cain ME. A statistical method for analyzing rating scale data: the BBB locomotor score. J Neurotrauma 2002;19(10):1251-60. https://doi.org/10.1089/08977150260338038
  44. Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 1978;10(1):38-43.
  45. Raben N, Nagaraju K, Lee E, Plotz P. Modulation of disease severity in mice with targeted disruption of the acid alpha-glucosidase gene. Neuromuscul Disord 2000;10(4-5):283-91. https://doi.org/10.1016/S0960-8966(99)00117-0
  46. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 1999;835(1):18-26. https://doi.org/10.1016/S0006-8993(98)01258-X
  47. Hamann M, Meisler MH, Richter A. Motor disturbances in mice with deficiency of the sodium channel gene Scn8a show features of human dystonia. Experimental Neurology 2003;184(2):830-8. https://doi.org/10.1016/S0014-4886(03)00290-5
  48. Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A 2000;97(16):9209-14. https://doi.org/10.1073/pnas.97.16.9209
  49. Wang Y, Liu TE, Pan W, Chi H, Chen J, Yu Z, et al. Small molecule compounds alleviate anisomycin-induced oxidative stress injury in SH-SY5Y cells via downregulation of p66shc and Abeta1-42 expression. Exp Ther Med 2016;11(2):593-600. https://doi.org/10.3892/etm.2015.2921
  50. Fu W, Sui D, Yu X, Gou D, Zhou Y, Xu H. Protective effects of ginsenoside Rg2 against H2O2-induced injury and apoptosis in H9c2 cells. Int J Clin Exp Med 2015;8(11):19938-47.
  51. Balci M, Namuslu M, Devrim E, Durak I. Effects of computer monitor-emitted radiation on oxidant/antioxidant balance in cornea and lens from rats. Mol Vis 2009;15:2521-5.
  52. Porfire AS, Leucuta SE, Kiss B, Loghin F, Parvu AE. Investigation into the role of Cu/Zn-SOD delivery system on its antioxidant and anti-inflammatory activity in rat model of peritonitis. Pharmacol Rep 2014;66(4):670-6. https://doi.org/10.1016/j.pharep.2014.03.011
  53. Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013;2013:956792. https://doi.org/10.1155/2013/956792
  54. Stroke Therapy Academic Industry R. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999;30(12):2752-8. https://doi.org/10.1161/01.STR.30.12.2752
  55. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009;40(6):2244-50. https://doi.org/10.1161/strokeaha.108.541128
  56. Higgins J, Green S. Cochrane Handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011.
  57. Tang YY, Guo WX, Lu ZF, Cheng MH, Shen YX, Zhang YZ. Ginsenoside Rg1 promotes the migration of olfactory ensheathing cells via the PI3K/akt pathway to repair rat spinal cord injury. Biol Pharm Bull 2017;40(10):1630-7. https://doi.org/10.1248/bpb.b16-00896
  58. Guo WX. Experiment of ginsenoside Rg1 promoting migration of olfactory ensheathing cells and repairing spinal cord injury. Soochow, China: Soochow University; 2015.
  59. Wang WQ, Li YF, Zhang DW. The effect of ginseng and bone marrow mesenchymal stem cell transplantation on functional recovery of rats with spinal cord injury. Chin J TCM WM Crit Care 2014;21(6):401-4.
  60. Meng FJ, Li YF, Zhang DW, Liu JM. Effect of ginseng and rat amniotic epithelial cell transplantation on functional recovery in rats with spinal cord injury. Chin J TCM WM Crit Care 2012;19(1):12-5.
  61. Zhang ZG, Li YF, Zhu D, Zhang DW. Effect and significance of ginseng on the contents of MDA, SOD and NO in rats with spinal cord injury. Journal of Apoplexy and Nervous Diseases 2014;31(12).
  62. Kim YO, Kim Y, Lee K, Na SW, Hong SP, Valan Arasu M, et al. Panax ginseng improves functional recovery after contusive spinal cord injury by regulating the inflammatory response in rats: an in vivo study. Evid Based Complement Alternat Med 2015;2015:817096.
  63. Wang W, Shen H, Xie JJ, Ling J, Lu H. Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med 2015;8(3):3514-21.
  64. Zhu P, Samukawa K, Fujita H, Kato H, Sakanaka M. Oral administration of red ginseng extract promotes neurorestoration after compressive spinal cord injury in rats. Evid Based Complement Alternat Med 2017;2017:1265464.
  65. Sun JZ, Ma T, Ding R, Shi X, Huang J, Wu X, et al. Effects of ginsenoside Rg1 on serum MDA, SOD, IL-1β and IL-10 levels in SD rats with spinal cord injury. Modern Journal of Integrated Traditional Chinese and Western Medicine 2019;28(1):27-33.
  66. Liu X, Gu X, Yu M, Zi Y, Yu H, Wang Y, et al. Effects of ginsenoside Rb1 on oxidative stress injury in rat spinal cords by regulating the eNOS/Nrf2/HO-1 signaling pathway. Exp Ther Med 2018;16(2):1079-86.
  67. Wang P, Lin C, Wu S, Huang K, Wang Y, Bao X, et al. Inhibition of autophagy is involved in the protective effects of ginsenoside Rb1 on spinal cord injury. Cell Mol Neurobiol 2018;38(3):679-90. https://doi.org/10.1007/s10571-017-0527-8
  68. Cong L, Chen W. Neuroprotective effect of ginsenoside rd in spinal cord injury rats. Basic Clin Pharmacol Toxicol 2016;119(2):193-201. https://doi.org/10.1111/bcpt.12562
  69. Sun JZ, Liu XW, Guan HP, Zhang P, Liu Q, Yang J, et al. Effect of ginsenoside Rg1 on transformation growth factor-beta and brain-derived neurotrophic factor expression in spinal cord injury rats. Chinese Journal of Tissue Engineering Research 2015;19(18):2862-6.
  70. Liu YL. The protective effects of ginsenoside Rg1 in rats with spinal cord injury Soochow. China: Soochow University; 2015.
  71. Li Q. Protective effects of ginsenoside Rb1 on acute spinal cord injury in rats. China Journal of Pharmaceutical Economics 2013;7:74-5.
  72. Song YX, Jin CY, Zeng ZY, Wang B, Zhang JQ. Study on the mechanism underlying neuroprotective effect of ginsenosides in rats after spinal cord injury. Hainan Medical Journal 2009;20(5):6-9. https://doi.org/10.3969/j.issn.1003-6350.2009.05.003
  73. Sakanaka M, Zhu P, Zhang B, Wen TC, Cao F, Ma YJ, et al. Intravenous infusion of dihydroginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma 2007;24(6):1037-54. https://doi.org/10.1089/neu.2006.0182
  74. Guo DQ, Yang L, Xiao JD, Wang DP, Xie WJ. Experimental effects of ginseng saponin in treatment of acute spinal cord injury of rat. China Journal of Modern Medicine 2004;14(12).
  75. Pharmacopoeia Committee of P. R. China. Pharmacopoeia of people's Republic of China. 10th ed. Beijing: China Medical Science and Technology Press; 2015.
  76. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42(3):255-63. https://doi.org/10.1016/j.jgr.2017.04.011
  77. Guo CL, Cui XM, Yang XY, Wu S. Advances in studies on biotransformation of ginsensides. China Journal of Chinese Materia Medica 2014;39(20):3899-904.
  78. Shin KC, Oh DK. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 2016;36(6):1036-49. https://doi.org/10.3109/07388551.2015.1083942
  79. Wang L, Zhao SJ, Liang YL, Sun Y, Cao HJ, Han Y. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius. Funct Integr Genomics 2014;14(3):559-70. https://doi.org/10.1007/s10142-014-0386-z
  80. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41(4):435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  81. Huang L, Liu LF, Liu J, Dou L, Wang GY, Liu XQ, et al. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons. Neural Regen Res 2016;11(2):319-25. https://doi.org/10.4103/1673-5374.177741
  82. Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. FASEB J 2006;20(8):1269-71. https://doi.org/10.1096/fj.05-5530fje
  83. Qiu J, Li W, Feng SH, Wang M, He ZY. Ginsenoside Rh2 promotes non-amyloidgenic cleavage of amyloid precursor protein via a cholesterol-dependent pathway. Genet Mol Res 2014;13(2):3586-98. https://doi.org/10.4238/2014.May.9.2
  84. Nie L, Xia J, Li H, Zhang Z, Yang Y, Huang X, et al. Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of alzheimer's disease. Oxid Med Cell Longev 2017;2017:6473506.
  85. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, et al. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2017;41(2):127-33. https://doi.org/10.1016/j.jgr.2016.02.001
  86. Lee SY, Jeong JJ, Eun SH, Kim DH. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 2015;762:333-43. https://doi.org/10.1016/j.ejphar.2015.06.011
  87. Kang KS, Kim HY, Baek SH, Yoo HH, Park JH, Yokozawa T. Study on the hydroxyl radical scavenging activity changes of ginseng and ginsenoside-Rb2 by heat processing. Biol Pharm Bull 2007;30(4):724-8. https://doi.org/10.1248/bpb.30.724
  88. Kim DH, Park CH, Park D, Choi YJ, Park MH, Chung KW, et al. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Arch Pharm Res 2014;37(6):813-20. https://doi.org/10.1007/s12272-013-0223-2
  89. Jung JS, Lee SY, Kim DH, Kim HS. Protopanaxatriol ginsenoside Rh1 upregulates phase II antioxidant enzyme gene expression in rat primary astrocytes: involvement of MAP kinases and Nrf2/ARE signaling. Biomol Ther (Seoul) 2016;24(1):33-9. https://doi.org/10.4062/biomolther.2015.129
  90. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 1994;17(5):635-9. https://doi.org/10.1248/bpb.17.635
  91. Jiang J, Yuan Z, Sun Y, Bu Y, Li W, Fei Z. Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017;96:619-25. https://doi.org/10.1016/j.biopha.2017.10.043
  92. Kim MJ, Yun H, Kim DH, Kang I, Choe W, Kim SS, et al. AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2. J Ginseng Res 2014;38(1):16-21. https://doi.org/10.1016/j.jgr.2013.11.010
  93. Huang Q, Gao B, Jie Q, Wei BY, Fan J, Zhang HY, et al. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014;66:306-14. https://doi.org/10.1016/j.bone.2014.06.010
  94. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7(1):65-74. https://doi.org/10.2174/157015909787602823
  95. Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 2005;125(4):629-37. https://doi.org/10.1111/j.0022-202X.2005.23856.x
  96. Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen 2016;36:20. https://doi.org/10.1186/s41232-016-0026-1
  97. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014;20(7):1126-67. https://doi.org/10.1089/ars.2012.5149
  98. Ren Y, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013;2013:945034. https://doi.org/10.1155/2013/945034
  99. Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2012;50(4):264-74. https://doi.org/10.1038/sc.2011.111
  100. Hamann K, Shi R. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 2009;111(6):1348-56. https://doi.org/10.1111/j.1471-4159.2009.06395.x
  101. Lu C, Sun Z, Wang L. Inhibition of L-type Ca(2+) current by ginsenoside Rd in rat ventricular myocytes. J Ginseng Res 2015;39(2):169-77. https://doi.org/10.1016/j.jgr.2014.11.003
  102. Li N, Liu B, Dluzen DE, Jin Y. Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 2007;111(3):458-63. https://doi.org/10.1016/j.jep.2006.12.015
  103. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012;5(1):9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  104. Oh JH, Hyun JY, Varshavsky A. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway. Proc Natl Acad Sci U S A 2017;114(22):E4370-9.
  105. Zheng M, Xin Y, Li Y, Xu F, Xi X, Guo H, et al. Ginsenosides: a potential neuroprotective agent. Biomed Res Int 2018;2018:8174345. https://doi.org/10.1155/2018/8174345
  106. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012;202:342-51. https://doi.org/10.1016/j.neuroscience.2011.11.070
  107. Chen LM, Zhou XM, Cao YL, Hu WX. Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res 2008;10(5-6):439-45. https://doi.org/10.1080/10286020801892292
  108. He B, Chen P, Yang J, Yun Y, Zhang X, Yang R, et al. Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci Lett 2012;526(2):106-11. https://doi.org/10.1016/j.neulet.2012.08.022
  109. Cheng Z, Zhang M, Ling C, Zhu Y, Ren H, Hong C, et al. Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules 2019;24(6).
  110. Miao HH, Zhang Y, Ding GN, Hong FX, Dong P, Tian M. Ginsenoside Rb1 attenuates isoflurane/surgery-induced cognitive dysfunction via inhibiting neuroinflammation and oxidative stress. Biomed Environ Sci 2017;30(5):363-72. https://doi.org/10.3967/bes2017.047
  111. Vinoth Kumar R, Oh TW, Park YK. Anti-inflammatory effects of ginsenosideRh2 inhibits LPS-induced activation of microglia and overproduction of inflammatory mediators via modulation of TGF-beta1/smad pathway. Neurochem Res 2016;41(5):951-7. https://doi.org/10.1007/s11064-015-1804-x
  112. Kang A, Xie T, Zhu D, Shan J, Di L, Zheng X. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J Agric Food Chem 2017;65(32):6861-9. https://doi.org/10.1021/acs.jafc.7b02386
  113. Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra. Toxicol Lett 2016;243:7-21. https://doi.org/10.1016/j.toxlet.2015.12.005
  114. Cai M, Yang EJ. Ginsenoside Re attenuates neuroinflammation in a symptomatic ALS animal model. Am J Chin Med 2016;44(2):401-13. https://doi.org/10.1142/s0192415x16500233
  115. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, et al. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158(1-2):143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  116. Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48(6):1516-20. https://doi.org/10.1016/j.fct.2010.03.018
  117. Kong LT, Wang Q, Xiao BX, Liao YH, He XX, Ye LH, et al. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia 2013;86:48-53. https://doi.org/10.1016/j.fitote.2013.01.019
  118. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738694.
  119. Feng R, Liu J, Wang Z, Zhang J, Cates C, Rousselle T, et al. The structureactivity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes. Biochem Biophys Res Commun 2017;494(3-4):556-68. https://doi.org/10.1016/j.bbrc.2017.10.056
  120. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 2002;25(1):58-63. https://doi.org/10.1248/bpb.25.58
  121. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 2004;27(1):61-7. https://doi.org/10.1007/BF02980048
  122. Bowe CL, Mokhtarzadeh L, Venkatesan P, Babu S, Axelrod HR, Sofia MJ, et al. Design of compounds that increase the absorption of polar molecules. Proc Natl Acad Sci U S A 1997;94(22):12218-23. https://doi.org/10.1073/pnas.94.22.12218
  123. Khalid SI, Nunna RS, Maasarani S, Kelly BSR, Sroussi H, Mehta AI, et al. Pharmacologic and cellular therapies in the treatment of traumatic spinal cord injuries: a systematic review. J Clin Neurosci 2020;79:12-20. https://doi.org/10.1016/j.jocn.2020.07.013
  124. Fan S, Zhang Z, Su H, Xu P, Qi H, Zhao D, et al. Panax ginseng clinical trials: current status and future perspectives. Biomed Pharmacother 2020;132:110832. https://doi.org/10.1016/j.biopha.2020.110832
  125. Liu X, Xia J, Wang L, Song Y, Yang J, Yan Y, et al. Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, phase II multicenter trial. Eur J Neurol 2009;16(5):569-75. https://doi.org/10.1111/j.1468-1331.2009.02534.x
  126. Chai S, Zhou B. Clinical observation of scalp acupuncture combined with abdominal acupuncture for cervical spondylotic myelopathy in early stage. Journal of New Chinese Medicine 2018;50(4):166-8.
  127. Zhang P, Wu XP, Hu ZD, Zhou CJ. Clinical observation on the treatment of cervical spondylotic myelopathy with needle-knife therapy. Hubei Journal of Traditional Chinese Medicine 2014;36(9):62-3.
  128. Li JJ, Zhao BL, Bai G, Wang HD, Cai J, Liu K, et al. Clinical study of comprehensive treatment by traditional Chinese medicine for cervical spondylotic myelopathy. China Medical Herald 2014;11(32):77-82.
  129. Gao ZH. Small needle knife plus comprehensive therapy for cervical spondylotic myelopathy. Hubei Journal of Traditional Chinese Medicine 2007;29(2):48. https://doi.org/10.3969/j.issn.1000-0704.2007.02.032
  130. Jiang HT, Chen M. Curative effect observation of 60 cases of cervical spondylotic myelopathy treated by warming needle and moxibustion. Lishizhen Medicine and Materia Medica Research 2014;25(2):389.
  131. Lai CB, Guo Q, Huang Y, Zie NX, Wang Q, Liu CQ. Traditional Chinese medicine comprehensive therapy in the conservative treatment of cervical spondylotic myelopathy for 18 cases. Chinese Medicine Modern Distance Education of China 2018;16(4):129-30.
  132. Guo JB. Integrated Traditional Chinese medicine treatment of mild cervical spondylotic myelopathy clinical observation of 40 cases. Sichuan: Chengdu University of Traditional Chinese Medicine; 2011.
  133. Gao QY. Experience of treating cervical spondylotic myelopathy patients with Chinese traditional medicine doctor named Zhang Tianjian. The Journal of Traditional Chinese Orthopedics and Traumatology 2006;18(2):64. https://doi.org/10.3969/j.issn.1001-6015.2006.02.051
  134. Wahid F, Khan T, Subhan F, Khan MA, Kim YY. Ginseng pharmacology: multiple molecular targets and recent clinical trials. Drugs of the Future 2010;35(5):399-407. https://doi.org/10.1358/dof.2010.035.05.1484393
  135. Wood J, Bernards MA, Wan WK, Charpentier PA. Extraction of ginsenosides from North American ginseng using modified supercritical carbon dioxide. J Supercrit Fluids 2006;39:40-7. https://doi.org/10.1016/j.supflu.2006.01.016
  136. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006;17:300-12. https://doi.org/10.1016/j.tifs.2005.12.004
  137. Razgonova M, Zakharenko A, Shin TS, Chung G, Golokhvast K. Supercritical CO2 extraction and identification of ginsenosides in Russian and north Korean ginseng by HPLC with tandem mass spectrometry. Molecules 2020;25(6).
  138. Lee NH, Son CG. Systematic review of randomized controlled trials evaluating the efficacy and safety of ginseng. J Acupunct Meridian Stud 2011;4(2):85-97. https://doi.org/10.1016/S2005-2901(11)60013-7
  139. Engels HJ, Kolokouri I, Cieslak 2nd TJ, Wirth JC. Effects of ginseng supplementation on supramaximal exercise performance and short-term recovery. J Strength Cond Res 2001;15(3):290-5. https://doi.org/10.1519/1533-4287(2001)015<0290:EOGSOS>2.0.CO;2
  140. Caron MF, Hotsko AL, Robertson S, Mandybur L, Kluger J, White CM. Electrocardiographic and hemodynamic effects of Panax ginseng. Ann Pharmacother 2002;36(5):758-63. https://doi.org/10.1345/aph.1A411
  141. Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan-Zdravkovic U, Xu Z, et al. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med 2000;160(7):1009-13. https://doi.org/10.1001/archinte.160.7.1009
  142. Stavro PM, Woo M, Leiter LA, Heim TF, Sievenpiper JL, Vuksan V. Long-term intake of North American ginseng has no effect on 24-hour blood pressure and renal function. Hypertension 2006;47(4):791-6. https://doi.org/10.1161/01.hyp.0000205150.43169.2c
  143. Seo JC, Han SW, Byun JS, An HD, Han ID, Cho GH, et al. The effects of ginseng and American ginseng on general symptoms in Koreans and Chinese: double-blind randomised controlled trials. J Ginseng Res 2005;29(1):27-36. https://doi.org/10.5142/JGR.2005.29.1.027
  144. Hou J, Xue J, Zhao X, Wang Z, Li W, Li X, et al. Octyl ester of ginsenoside compound K as novel anti-hepatoma compound: synthesis and evaluation on murine H22 cells in vitro and in vivo. Chem Biol Drug Des 2018;91(4):951-6. https://doi.org/10.1111/cbdd.13153
  145. Gao Y, Wang T, Wang G, Li G, Sun C, Jiang Z, et al. Preclinical safety of ginsenoside compound K: acute, and 26-week oral toxicity studies in mice and rats. Food Chem Toxicol 2019;131:110578. https://doi.org/10.1016/j.fct.2019.110578
  146. Li C, Wang Z, Li G, Wang Z, Yang J, Li Y, et al. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J Ginseng Res 2020;44(2):222-8. https://doi.org/10.1016/j.jgr.2018.10.001
  147. Chen L, Zhou L, Huang J, Wang Y, Yang G, Tan Z, et al. Single- and multiple-dose trials to determine the pharmacokinetics, safety, tolerability, and sex effect of oral ginsenoside compound K in healthy Chinese volunteers. Front Pharmacol 2017;8:965. https://doi.org/10.3389/fphar.2017.00965
  148. Zhang X, Zhang D, Xu J, Gu J, Zhao Y. Determination of 25-OH-PPD in rat plasma by high-performance liquid chromatography-mass spectrometry and its application in rat pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007;858(1-2):65-70. https://doi.org/10.1016/j.jchromb.2007.08.021
  149. Jin S, Jeon JH, Lee S, Kang WY, Seong SJ, Yoon YR, et al. Detection of 13 ginsenosides (Rb1, Rb2, Rc, rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract. Molecules 2019;24(14).
  150. Li J, Shao ZH, Xie JT, Wang CZ, Ramachandran S, Yin JJ, et al. The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. Arch Pharm Res 2012;35(7):1259-67. https://doi.org/10.1007/s12272-012-0717-3
  151. Chen C, Jiang J, Lu JM, Chai H, Wang X, Lin PH, et al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 2010;299(1):H193-201. https://doi.org/10.1152/ajpheart.00431.2009
  152. Zhou P, Xie W, Sun Y, Dai Z, Li G, Sun G, et al. Ginsenoside Rb1 and mitochondria: a short review of the literature. Mol Cell Probes 2019;43:1-5. https://doi.org/10.1016/j.mcp.2018.12.001
  153. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37(1):1-7. https://doi.org/10.5142/jgr.2013.37.1
  154. Xu W, Choi HK, Huang L. State of panax ginseng research: a global analysis. Molecules 2017;22(9).
  155. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 2002;43(4):244-58. https://doi.org/10.1093/ilar.43.4.244