DOI QR코드

DOI QR Code

Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: A systematic review

  • Hossain, Mohammad Amjad (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University) ;
  • Kim, Jong-Hoon (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University)
  • Received : 2022.01.12
  • Accepted : 2022.01.17
  • Published : 2022.05.01

Abstract

Coronavirus has been spreading rapidly around the world since it broke out in China in 2019. Respiratory diseases caused by coronavirus infection cause various diseases ranging from asymptomatic subclinical infections to severe pneumonia and cardiovascular complications, leading to death. In this regard, natural products are being studied to prevent various diseases caused by COVID-19. In current review, we would like to present mechanisms related to the inhibition of heart disease in ginseng and ginsenoside against SARS-CoV-2. In many previous studies, ginseng and ginsenoside are known to have antioxidant, blood flow improvement, improvement of vascular and heart function, blood pressure control, suppression of myocardial infarction and heart failure, and antiarrhythmia. Therefore, ginseng and ginsenoside have a possibility to suppress cardiovascular complications caused by COVID-19. Many of research provide evidence for ginseng and ginsenoside as treatments for the risk of cardiovascular complications. However, in this review, more specific contents on the proposition of the efficacy of ginseng and ginsenoside for COVID-19 should be presented. Therefore, we hope that researches to reduce cardiovascular complications of ginseng and ginsenoside for COVID-19 should be presented to reduce mortality for COVID-19.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2019R1A6A1A03033084).

References

  1. Jayanta Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 2020;132:110886. https://doi.org/10.1016/j.biopha.2020.110886
  2. Puelles VG, Lutgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 2020;383(6):590-2. Aug 6. https://doi.org/10.1056/NEJMc2011400
  3. Topol EJ. COVID-19 can affect the heart. Science 2020;370(6515):408-9. Oct 23. https://doi.org/10.1126/science.abe2813
  4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
  5. Bansal M. Cardiovascular disease and COVID-19. Diabetes & metabolic syndrome. Clinical Research & Reviews; 2020. p. 247-50.
  6. Mahady GB, Gyllenhall C, Fong HH, Farnsworth NR. Ginsengs: a review of safety and efficacy. Nutr Clin Care 2000;3:90-101. https://doi.org/10.1046/j.1523-5408.2000.00020.x
  7. World Health Organization. WHO monographs on selected medicinal plants. Geneva: World Health Organization; 1999.
  8. Maffei Facino R, Carini M, Aldini G, et al. Panax ginseng administration in the rat prevents myocardial ischemiareperfusion damage induced by hyperbaric oxygen: evidence for an antioxidant intervention. Planta Med 1999;65:614-9. https://doi.org/10.1055/s-1999-14034
  9. Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48:1516-20. https://doi.org/10.1016/j.fct.2010.03.018
  10. Liu Z, Li Z, Liu X. Effect of ginsenoside Re on cardiomyocyte apoptosis and expression of Bcl-2/Bax gene after ischemia and reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 2002;22:305-9. https://doi.org/10.1007/BF02896771
  11. Wang Z, Li M, Wu WK, et al. Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther 2008;22:443-52. https://doi.org/10.1007/s10557-008-6129-4
  12. Guan L, Li W, Liu Z. Effect of ginsenoside-Rb1 on cardiomyocyte apoptosis after ischemia and reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 2002;22:212-5. https://doi.org/10.1007/BF02828182
  13. Kong HL, Li ZQ, Zhao YJ, et al. Ginsenoside Rb1 protects cardiomyocytes against CoCl2-induced apoptosis in neonatal rats by inhibiting mitochondria permeability transition pore opening. Acta Pharmacol Sin 2010;31:687-95. https://doi.org/10.1038/aps.2010.52
  14. Wu Y, Xia ZY, Dou J, et al. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011 Oct;38(7):4327-35. https://doi.org/10.1007/s11033-010-0558-4
  15. Zhu D, Wu L, Li CR, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  16. Wang XD, Gu TX, Shi EY, et al. Effect and mechanism of panaxoside Rg1 on neovascularization in myocardial infarction rats. Chin J Integr Med 2010;16:162-6. https://doi.org/10.1007/s11655-010-0162-4
  17. Xiong T-Y, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-termimplications. Eur Heart J 2020;41: 1798-800. https://doi.org/10.1093/eurheartj/ehaa231
  18. Brian DA, Baric RS. Coronavirus genome structure and replication. Coronavirus Replication and Reverse Genetics 2005:1-30.
  19. Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y, Li R, Jiang H, Yang Z, Chung SK, Liu L, Wong VKW. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res 2021;172:105820. https://doi.org/10.1016/j.phrs.2021.105820
  20. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  21. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  22. Kim J, Byeon H, Im K, Min H. Effects of ginsenosides on regulatory T cell dierentiation. Food Sci Biotechnol 2018;27:227-32. https://doi.org/10.1007/s10068-017-0255-3
  23. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054-62. Mar 28. https://doi.org/10.1016/s0140-6736(20)30566-3
  24. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC. Suppression of MAPKs/NF-κB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264.7 cells. Immunol Invest 2016;45:439-49. https://doi.org/10.3109/08820139.2016.1168830
  25. Zhou P, Lu S, Luo Y, Wang S, Yang K, Zhai Y, Sun G, Sun X. Attenuation of TNF-α-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front Pharmacol 2017;8:464. https://doi.org/10.3389/fphar.2017.00464
  26. Kim MK, Kang H, Baek CW, Jung YH, Woo YC, Choi GJ, Shin HY, Kim KS. Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J Ginseng Res 2018;42:183-91. https://doi.org/10.1016/j.jgr.2017.02.005
  27. Luo H, Zhu D, Wang Y, Chen Y, Jiang R, Yu P, Qiu Z. Study on the structure of ginseng glycopeptides with anti-inflammatory and analgesic activity. Molecules 2018;23:1325. https://doi.org/10.3390/molecules23061325
  28. Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 2013;34:3175-81. https://doi.org/10.1093/eurheartj/eht351
  29. Kitta Y, Obata JE, Nakamura T, et al. Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol 2009;53:323-30. https://doi.org/10.1016/j.jacc.2008.08.074
  30. Libby P, Luscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020;41:3038-44. https://doi.org/10.1093/eurheartj/ehaa623
  31. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 2020;7:e575-82. https://doi.org/10.1016/S2352-3026(20)30216-7
  32. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417-8. https://doi.org/10.1016/s0140-6736(20)30937-5
  33. Klok FA, Kruip M, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020;191:148-50. https://doi.org/10.1016/j.thromres.2020.04.041
  34. Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol 2007;14:55-61. https://doi.org/10.1097/00062752-200701000-00011
  35. Luscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1986;8:344-8. https://doi.org/10.1161/01.HYP.8.4.344
  36. Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemostasis 1993;70:105-10. https://doi.org/10.1055/s-0038-1646169
  37. Gimbrone Jr MA, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016;118:620-36. https://doi.org/10.1161/CIRCRESAHA.115.306301
  38. Lubos E, Kelly NJ, Oldebeken SR, et al. Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem 2011;286:35407-17. https://doi.org/10.1074/jbc.M110.205708
  39. Loffredo L, Martino F, Zicari AM, et al. Enhanced NOX-2 derived oxidative stress in offspring of patients with early myocardial infarction. Int J Cardiol 2019;293:56-9. https://doi.org/10.1016/j.ijcard.2019.05.014
  40. Xuan Y, G ao X, Holleczek B, Brenner H, Schottker B. Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: results from a large cohort study. Int J Cardiol 2018;273:223-9. https://doi.org/10.1016/j.ijcard.2018.08.002
  41. Pennathur S, Heinecke JW. Oxidative stress and endothelial dysfunction in vascular disease. Curr Diabetes Rep 2007;7:257-64. https://doi.org/10.1007/s11892-007-0041-3
  42. Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006;290:H2247-56. https://doi.org/10.1152/ajpheart.00796.2005
  43. Nieuwdorp M, Meuwese MC, Mooij HL, et al. Tumor necrosis factor-α inhibition protects against endotoxininduced endothelial glycocalyx perturbation. Atherosclerosis 2009;202:296-303. https://doi.org/10.1016/j.atherosclerosis.2008.03.024
  44. Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol 2005;99:1471-6. https://doi.org/10.1152/japplphysiol.00436.2005
  45. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019;23:16. https://doi.org/10.1186/s13054-018-2292-6
  46. Stahl K, Gronski PA, Kiyan Y, et al. Injury to the endothelial glycocalyx in critically ill patients with COVID-19. Am J Respir Crit Care Med 2020;202:1178-81. https://doi.org/10.1164/rccm.202007-2676LE
  47. Rovas A, Osiaevi I, Buscher K, et al. Microvascular dysfunction in COVID-19:the MYSTIC study. Angiogenesis 2021;24:145-57. https://doi.org/10.1007/s10456-020-09753-7
  48. Buijsers B, Yanginlar C, de Nooijer A, et al. Increased plasma heparanase activity in COVID-19 patients. Front Immunol 2020;11:575047. https://doi.org/10.3389/fimmu.2020.575047
  49. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995;332:488-93. https://doi.org/10.1056/NEJM199502233320802
  50. Shahin Y, Khan JA, Samuel N, Chetter I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis 2011;216:7-16. https://doi.org/10.1016/j.atherosclerosis.2011.02.044
  51. Flammer AJ, Sudano I, Hermann F, et al. Angiotensin converting enzyme inhibition improves vascular function in rheumatoid arthritis. Circulation 2008;117:2262-9. https://doi.org/10.1161/CIRCULATIONAHA.107.734384
  52. Penny WF, Ben-Yehuda O, Kuroe K, et al. Improvement of coronary artery endothelial dysfunction with lipid lowering therapy: heterogeneity of segmental response and correlation with plasma- oxidized low density lipoprotein. J Am Coll Cardiol 2001;37:766-74. https://doi.org/10.1016/S0735-1097(00)01180-3
  53. Kang SY, Kim SH, Schini VB, Kim ND. Dietary ginsenosides improve endothelium dependent relaxation in the thoracic aorta of hypercholesterolemic rabbit. Gen Pharmacol 1995;26:483-7. https://doi.org/10.1016/0306-3623(95)94002-X
  54. Kang SY, Schini VB, Kim ND. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci 1995;56:1577-86. https://doi.org/10.1016/0024-3205(95)00124-O
  55. Choi YD, Xin ZC, Choi HK. Effect of Korean red ginseng on the rabbit corpus cavernosal smooth muscle. Int J Impot Res 1998;10:37-43. https://doi.org/10.1038/sj/ijir/3900300
  56. Chan GH, Law BY, Chu JM, Yue KK, Jiang ZH, Lau CW, Huang Y, Chan SW, Ying-Kit Yue P, Wong RN. Ginseng extracts restore high-glucose induced vascular dysfunctions by altering triglyceride metabolism and downregulation of atherosclerosis-related genes. Evid Based Complement Alternat Med 2013;2013:13.
  57. Lee HJ, Kim BM, Lee SH, Sohn JT, Choi JW, Cho CW, Hong HD, Rhee YK, Kim HJ. Ginseng-induced changes to blood vessel dilation and the metabolome of rats. Nutrients 2020;12:2238. https://doi.org/10.3390/nu12082238
  58. Chen X, Yao F, Song J, Fu B, Sun G, Song X, Fu C, Jiang R, Sun L. Protective effects of phenolic acid extract from ginseng on vascular endothelial cell injury induced by palmitate via activation of PI3K/Akt/eNOS pathway. J Food Sci 2020;85:576-81. https://doi.org/10.1111/1750-3841.15071
  59. Zhou P, Zhang X, Guo M, Guo R, Wang L, Zhang Z, Lin Z, Dong M, Dai H, Ji X, Lu H. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/beta-catenin pathway. J Cell Mol Med 2019;23:7088-98. https://doi.org/10.1111/jcmm.14611
  60. Bhatla A, Mayer MM, Adusumalli S, Hyman MC, Oh E, Tierney A, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020;20:S1547-5271.
  61. Yu WL, Toh HS, Liao CT, Chang WT. A double-edged sword-cardiovascular con- cerns of potential anti-COVID-19 drugs. Cardiovasc Drugs Ther 2020;17:1-10.
  62. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, De Cobelli F, Tresoldi M, Cappelletti AM, Basso C, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J 2020;41:1861-2. https://doi.org/10.1093/eurheartj/ehaa286
  63. Wang T, Zhang H. Review of anti-arrhythmic effects in Ginseng. Chin J Cardiac Pacing Electrophysiol 2004;18:309-10.
  64. Zeng Q, Zhan S, Zhang W, Sun X, Zhong G. Research on ICa2+ current inhibition effects of ginsenoside Rg1 in myocyte of Guinea pig. J Norman Bethune Univ Med Sci 1997;23:265-7.
  65. Pei J, Zhang Y, Chen J, Huang J, Pu J. Electrophysiological effect of ginsenoside Rb1 on L-type calcium current and transient outward potassium current in isolated rat ventricular myocytes. Mol Cardiol China 2011;11:230-4.
  66. Chen C, Zhang H. Effect of ginsenoside Re on triggering ventricular arrhythmia in rabbits. J Prac Med 2009;25:2237-40.
  67. Xiao Y, Ma Z, Wang Y, Tang H, Zhao Y, Liang Q, Tang X, Xiao C, Gao Y. Study of Shenfu pracparata on the toxicity effects of antiarrhythmia induced by aconitine. Pharmacol Clin Chin Mater Med 2013;29:12-5.
  68. Meng H, Yao M, Liu J. Effects of ginsenoside Re on sodium and potassium current in rat ventricular myocytes. World Chin Med 2013;8:1147-9.
  69. Lu W, Zhou J, Ma H, Lv G, You F, Ding A. Effects of astragaloside IV, ginsenoside and total saponins of panaxquinquefolium on mice with arrhythmia caused by toad venom. J Nanjing Univ Tradit Chin Med 2012;28:61-4. https://doi.org/10.3969/j.issn.1000-5005.2012.01.018
  70. Tachjian A, Maria V, Jahangir A. Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol 2010;55:515-25. https://doi.org/10.1016/j.jacc.2009.07.074
  71. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62. https://doi.org/10.1016/s0140-6736(20)30566-3
  72. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091.
  73. Boukhris M, Hillani A, Moroni F, Annabi MS, Addad F, Ribeiro MH, et al. Cardiovascular Implications of the COVID-19 pandemic: a global perspective. Can J Cardiol 2020;16:1068-80.
  74. Morishita S, Shoji M, Oguni Y, Ito C, Noguchi K, Sakanashi M. Effects of "kyushin", a drug containing toad venom, on experimental congestive heart failure in rabbits. Am J Chin Med 1992;20:83-9. https://doi.org/10.1142/S0192415X92000096
  75. You JS, Huang HF, Chang YL. Panax ginseng reduces adriamycin-induced heart failure in rats. Phytother Res 2005;19:1018-22. https://doi.org/10.1002/ptr.1778
  76. Deng J, Lv XT, Wu Q, Huang XN. Ginsenoside Rg1 inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol 2009;608:42-7. https://doi.org/10.1016/j.ejphar.2009.01.048
  77. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4:79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  78. Jiang QS, Huang XN, Dai ZK, Yang GZ, Zhou QX, Shi JS, Wu Q. Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. J Ethnopharmacol 2007;111:567-72. https://doi.org/10.1016/j.jep.2007.01.006
  79. Tsai CC, Chan P, Chen LJ, Chang CK, Liu Z, Lin JW. Merit of ginseng in the treatment of heart failure in type 1-like diabetic rats. BioMed Res Int 2014;2014:484161. https://doi.org/10.1155/2014/484161
  80. Wanha W, Wybraniec M, Kap lon-Cieslicka A, Kupczynska K, Dobrowolski P, Michalski B, Darocha S, Domienik-Karlowicz J, D'Ascenzo F, Kazmierski M, Januszek R, Bartus S, Witkowski A, Dudek D, Wojakowski W, Jaguszewski MJ. Myocardial infarction in the shadow of COVID-19. Cardiol J 2020;27:478-80.
  81. Sawadogo NH, Sanou H, Greene JA, Duclos V. Promises and perils of mobile health in Burkina Faso. Lancet 2021;398:738-9. https://doi.org/10.1016/S0140-6736(21)01001-1
  82. Yu CM, Wong RS, Wu EB, Kong SL, Wong J, Yip GW, Soo YO, Chiu ML, Chan YS, Hui D, Lee N, Wu A, Leung CB, Sung JJ. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med 2006;82:140-4. https://doi.org/10.1136/pgmj.2005.037515
  83. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011;38:4327-35. https://doi.org/10.1007/s11033-010-0558-4
  84. Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010;33:631-5. https://doi.org/10.1248/bpb.33.631
  85. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated risk pathway in an endothelial NOS-dependent mechanism. J Ethnopharmacol 2011;135:287-98. https://doi.org/10.1016/j.jep.2011.03.015
  86. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  87. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4:79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  88. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/Pi3k pathway. Life Sci 2011;88:725-9. https://doi.org/10.1016/j.lfs.2011.02.011
  89. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park JH. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoproteinSer157 phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  90. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  91. Xie Y, Wang X, Yang P, Zhang S. COVID-19 complicated by acute pulmonary embolism. Radiology Cardiothoracic Imaging 2020;2:e200067. https://doi.org/10.1148/ryct.2020200067
  92. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemostasis 2020;18:844-7. https://doi.org/10.1111/jth.14768
  93. Chen J, Wang X, Zhang S, et al. Findings of acute pulmonary embolism in COVID-19 patients. Lancet Infect Dis. [doi.org/10.2139/ssrn.3548771].
  94. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemostasis 2020. https://doi.org/10.1111/jth.14817.
  95. Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010;145:275-6. https://doi.org/10.1016/j.ijcard.2009.09.553
  96. Yi XQ, Li T, Wang JR, Wong VK, Luo P, Wong IY, Jiang ZH, Liu L, Zhou H. Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling. Phytomedicine 2010;17:1006-15. https://doi.org/10.1016/j.phymed.2010.06.012
  97. Ahn CM, Hong SJ, Choi SC, Park JH, Kim JS, Lim DS. Red ginseng extract improves coronary flow reserve and increases absolute numbers of various circulating angiogenic cells in patients with first ST-segment elevation acute myocardial infarction. Phytother Res 2011;25:239-49. https://doi.org/10.1002/ptr.3250
  98. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol 2007;17:1127-33.
  99. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2016;40:309-14. https://doi.org/10.1016/j.jgr.2015.09.002