Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3A04038150) and a grant (2019-2020) from the Korean Society of Ginseng.
References
- Nave KA. Myelination and support of axonal integrity by glia. Nature 2010;468:244-52. https://doi.org/10.1038/nature09614
- Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG, et al. Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 2010;31:1554-62. https://doi.org/10.1016/j.neurobiolaging.2008.08.015
- Dean 3rd DC, Muircheartaigh JO, Dirks H, Waskiewicz N, Lehman K, Walker L, et al. Modeling healthy male white matter and myelin development: 3 through 60months of age. Neuroimage 2014;84:742-52. https://doi.org/10.1016/j.neuroimage.2013.09.058
- Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 2004;55:458-68. https://doi.org/10.1002/ana.20016
- Prineas JW, Parratt JD. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 2012;72:18-31. https://doi.org/10.1002/ana.23634
- Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke 1996;27:1641-6. discussion 7. https://doi.org/10.1161/01.str.27.9.1641
- Li GL, Farooque M, Holtz A, Olsson Y. Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol 1999;98:473-80. https://doi.org/10.1007/s004010051112
- Vostrikov V, Orlovskaya D, Uranova N. Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J Biol Psychiatry 2008;9:34-42. https://doi.org/10.1080/15622970701210247
- Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001;55:597-610. https://doi.org/10.1016/S0361-9230(01)00528-7
- Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011;32:1341-71. https://doi.org/10.1016/j.neurobiolaging.2009.08.007
- Matute C. Calcium dyshomeostasis in white matter pathology. Cell Calcium 2010;47:150-7. https://doi.org/10.1016/j.ceca.2009.12.004
- Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antiguedad A, et al. Excitotoxic damage to white matter. J Anat 2007;210:693-702. https://doi.org/10.1111/j.1469-7580.2007.00733.x
- Pak K, Chan SL, Mattson MP. Presenilin-1 mutation sensitizes oligodendrocytes to glutamate and amyloid toxicities, and exacerbates white matter damage and memory impairment in mice. Neuromolecular Med 2003;3:53-64. https://doi.org/10.1385/NMM:3:1:53
- Rektor I, Svatkova A, Vojtisek L, Zikmundova I, Vanicek J, Kiraly A, et al. White matter alterations in Parkinson's disease with normal cognition precede grey matter atrophy. PLoS One 2018;13:e0187939. https://doi.org/10.1371/journal.pone.0187939
- Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in alzheimer's disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 2018;6:22. https://doi.org/10.1186/s40478-018-0515-3
- Auning E, Kjaervik VK, Selnes P, Aarsland D, Haram A, Bjornerud A, et al. White matter integrity and cognition in Parkinson's disease: a cross-sectional study. BMJ Open 2014;4:e003976. https://doi.org/10.1136/bmjopen-2013-003976
- Sterling NW, Du G, Lewis MM, Swavely S, Kong L, Styner M, et al. Cortical gray and subcortical white matter associations in Parkinson's disease. Neurobiol Aging 2017;49:100-8. https://doi.org/10.1016/j.neurobiolaging.2016.09.015
- Scheuer T, Brockmoller V, Blanco Knowlton M, Weitkamp JH, Ruhwedel T, Mueller S, et al. Oligodendroglial maldevelopment in the cerebellum after postnatal hyperoxia and its prevention by minocycline. Glia 2015;63:1825-39. https://doi.org/10.1002/glia.22847
- Rosenzweig S, Carmichael ST. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke 2013;44:2579-86. https://doi.org/10.1161/STROKEAHA.113.001796
- di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, et al. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 2013;8:e54722. https://doi.org/10.1371/journal.pone.0054722
- Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, et al. Oxidative damage in multiple sclerosis lesions. Brain 2011;134:1914-24. https://doi.org/10.1093/brain/awr128
- Honmou O, Felts PA, Waxman SG, Kocsis JD. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous schwann cells. J Neurosci 1996;16:3199-208. https://doi.org/10.1523/jneurosci.16-10-03199.1996
- Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012;485:517-21. https://doi.org/10.1038/nature11007
- Moore S, Khalaj AJ, Yoon J, Patel R, Hannsun G, Yoo T, et al. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav 2013;3:664-82. https://doi.org/10.1002/brb3.174
- Bruce CC, Zhao C, Franklin RJ. Remyelination - an effective means of neuroprotection. Horm Behav 2010;57:56-62. https://doi.org/10.1016/j.yhbeh.2009.06.004
- Cho IH. Effects of panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
- Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, et al. Korean red ginseng and ginsenoside-rb1/-rg1 alleviate experimental autoimmune encephalomyelitis by suppressing th1 and th17 cells and upregulating regulatory t cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
- Lee MJ, Chang BJ, Oh S, Nah SY, Cho IH. Korean red ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-kappab signaling pathways. J Ginseng Res 2018;42:436-46. https://doi.org/10.1016/j.jgr.2017.04.013
- Nam SM, Choi SH, Cho HJ, Seo JS, Choi M, Nahm SS, et al. Ginseng gintonin attenuates lead-induced rat cerebellar impairments during gestation and lactation. Biomolecules 2020;10.
- Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47. https://doi.org/10.1016/j.jgr.2017.03.011
- Mijan MA, Kim JY, Moon SY, Choi SH, Nah SY, Yang HJ. Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells. Front Pharmacol 2019;10:1211. https://doi.org/10.3389/fphar.2019.01211
- Yang HJ, Vainshtein A, Maik-Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun 2016;7:10884. https://doi.org/10.1038/ncomms10884
- Ishii A, Furusho M, Bansal R. Sustained activation of erk1/2 mapk in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J Neurosci 2013;33:175-86. https://doi.org/10.1523/JNEUROSCI.4403-12.2013
- Cui QL, Almazan G. Igf-i-induced oligodendrocyte progenitor proliferation requires pi3k/akt, mek/erk, and src-like tyrosine kinases. J Neurochem 2007;100:1480-93. https://doi.org/10.1111/j.1471-4159.2006.04329.x
- Rhim JH, Luo X, Gao D, Xu X, Zhou T, Li F, et al. Cell type-dependent erk-akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells. Sci Rep 2016;6:26547. https://doi.org/10.1038/srep26547
- Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R. Erk1/erk2 mapk signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci 2012;32:8855-64. https://doi.org/10.1523/JNEUROSCI.0137-12.2012
- Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, et al. Estrogen receptor beta ligand therapy activates pi3k/akt/mtor signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 2013;56:131-44. https://doi.org/10.1016/j.nbd.2013.04.005
- Dai J, Bercury KK, Macklin WB. Interaction of mtor and erk1/2 signaling to regulate oligodendrocyte differentiation. Glia 2014;62:2096-109. https://doi.org/10.1002/glia.22729
- Madsen PM, Pinto M, Patel S, McCarthy S, Gao H, Taherian M, et al. Mitochondrial DNA double-strand breaks in oligodendrocytes cause demyelination, axonal injury, and cns inflammation. J Neurosci 2017;37:10185-99. https://doi.org/10.1523/JNEUROSCI.1378-17.2017
- Barateiro A, Vaz AR, Silva SL, Fernandes A, Brites D. Er stress, mitochondrial dysfunction and calpain/jnk activation are involved in oligodendrocyte precursor cell death by unconjugated bilirubin. Neuromolecular Med 2012;14:285-302. https://doi.org/10.1007/s12017-012-8187-9
- Teske N, Liessem A, Fischbach F, Clarner T, Beyer C, Wruck C, et al. Chemical hypoxia-induced integrated stress response activation in oligodendrocytes is mediated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (nrf2). J Neurochem 2018;144:285-301. https://doi.org/10.1111/jnc.14270
- Forbes TA, Gallo V. All wrapped up: environmental effects on myelination. Trends Neurosci 2017;40:572-87. https://doi.org/10.1016/j.tins.2017.06.009
- Kempermann G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 2019;20:235-45. https://doi.org/10.1038/s41583-019-0120-x
- Sarah Foerster BN, McClain Crystal, Di Canio Ludovica, Civia Z Chen, Reich Daniel S, Simons Benjamin D, Franklin Robin JM. Proliferation is a requirement for differentiation of oligodendrocyte progenitor cells during cns remyelination. bioRxiv 2020:108373.
- Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M. Control of oligodendroglial cell number by the mir-17-92 cluster. Development 2010;137:2127-32. https://doi.org/10.1242/dev.050633
- Sohn EHDH, Kang NS, Jang SA, Park S, Lee H, Rhee DK, Pyo S. Effects of nonsaponin red ginseng components on the function of brain cells. J. Ginseng Res. 2008;32:62. https://doi.org/10.5142/JGR.2008.32.1.062
- Nah SY. Gintonin: a novel ginseng-derived ligand that targets g protein-coupled lysophosphatidic acid receptors. Curr Drug Targets 2012;13:1659-64. https://doi.org/10.2174/138945012803529947
- Chun JHT, Lynch KR, Spiegel S, Moolenaar WH. International union of basic and clinical pharmacology. Lxxviii. Lysophospholipid receptor nomenclature. Pharmacol Rev 2009;62:579-87. https://doi.org/10.1124/pr.110.003111
- Mahon MJ. The parathyroid hormone receptorsome and the potential for therapeutic intervention. Curr Drug Targets 2012;13:116-28. https://doi.org/10.2174/138945012798868416
- Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An rnasequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014;34:11929-47. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
- Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates g protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33:151-62. https://doi.org/10.1007/s10059-012-2216-z
- Narayanan SP, Flores AI, Wang F, Macklin WB. Akt signals through the mammalian target of rapamycin pathway to regulate cns myelination. J Neurosci 2009;29:6860-70. https://doi.org/10.1523/JNEUROSCI.0232-09.2009
- Butts BD, Houde C, Mehmet H. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ 2008;15:1178-86. https://doi.org/10.1038/cdd.2008.70
- Ross D, Siegel D. Functions of nqo1 in cellular protection and coq10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol 2017;8:595. https://doi.org/10.3389/fphys.2017.00595
- Wild AC, Moinova HR, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor nrf2. J Biol Chem 1999;274:33627-36. https://doi.org/10.1074/jbc.274.47.33627
- Harauz G, Boggs JM. Myelin management by the 18.5-kda and 21.5-kda classic myelin basic protein isoforms. J Neurochem 2013;125:334-61. https://doi.org/10.1111/jnc.12195
- Im DS, Nah SY. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacologica Sinica 2013;34:1367-73. https://doi.org/10.1038/aps.2013.100