DOI QR코드

DOI QR Code

서해병 폐기물 배출해역 오염퇴적물의 정화·복원을 위한 준설토 피복 효과 평가

Evaluating the Capping Effects of Dredged Materials on the Contaminated Sediment for Remediation and Restoration of the West Sea-Byeong Dumping Site

  • 투고 : 2022.04.04
  • 심사 : 2022.04.27
  • 발행 : 2022.04.30

초록

서해병 폐기물 배출해역 오염심화구역의 퇴적물 정화·복원을 위해 2013, 2014, 2016, 2017년에 준설토를 피복하였다. 피복 효과 평가를 위해 배출해역 내 피복구역(5개 정점)과 자연회복구역(2개 정점)을 설정하고 2014년부터 2020년까지 연 1회 구역별 표층 퇴적물을 채취하여 퇴적물 물리·화학적 특성 및 저서동물상을 분석하였다. 퇴적물 평균 입도(Mz)는 자연회복구역에서 5.91~7.64 Φ로 세립질이었고 피복구역에서는 준설토의 영향으로 1.47~3.01 Φ의 조립질 퇴적물로 구성되어 있었다. 유기물 및 중금속 함량은 피복구역에서 자연회복구역 대비 약 50 % 낮아(p<0.05) 준설토 피복 효과가 있는 것으로 판단되었다. 대형저서동물 분석 결과에서는 피복구역의 출현종수, 생태지수가 자연회복구역보다 낮게 나타났다(p<0.05). 피복구역의 출현종수 및 생태지수의 시계열 분석 결과에서는 2013, 2014년 피복 이후 초기 4년간 증가하다가 이후 감소하는 경향을 보였다. 이는 피복으로 인해 빠른 성장과 짧은 수명의 특징을 보이는 기회종 생물들이 피복 초기에 우세하다가 2016, 2017년에 추가로 피복이 진행됨에 따라 서식환경이 다시 교란되어 나타난 현상으로 추정된다. AMBI는 자연회복구역 및 피복구역에서 모두 2등급(Good), BPI는 1~2등급 수준을 유지하고 있어 건강한 저서상태로 평가되었다. 따라서 폐기물 배출해역의 오염퇴적물 정화 및 저서생태계 복원을 위한 준설토 피복은 오염도 저감효과는 나타나지만 저서생태계의 측면에서는 장기적인 모니터링을 통해 회복추이를 관찰해야 할 것으로 판단된다. 또한 향후 배출해역의 오염심화구역 정화 복원 사업 확대 시 적응적 관리가 필요할 것으로 판단된다.

For the remediation and restoration of contaminated sediment at the West Sea-Byeong dumping site, dredged materials was dumped in 2013, 2014, 2016, and 2017. The physicochemical properties and benthic fauna in surface sediments of the capping area (5 stations) and natural recovery area (2 stations) were analyzed annually from 2014 to 2020 to evaluate the capping effect of the dredged materials. The natural recovery area had a finer sediment with a mean particle size of 5.91-7.64 Φ, while the sediment in the capping area consisted of coarse-grained particles with a mean particle size of 1.47-3.01 Φ owing to the capping effect of dredged materials. Considering that the contents of organic matters (COD, TOC, and TN) and heavy metals in the capping area are approximately 50 % lower (p<0.05) than that in the natural recovery area, it is judged that there is a capping effect of dredged materials. As a result of analyzing macrobenthic assemblages, the number of species and ecological indices of the capping area were significantly lower than that of the natural recovery area (p<0.05). The number of species and ecological indices at the capping area were increased for the first four years after the capping in 2013 and 2014 and then tended to decrease thereafter. It is presumed that opportunistic species, which have rapid growth and short lifetime, appeared dominantly during the initial phase of capping, and the additory capping in 2016 and 2017 caused re-disturbance in the habitat environment. In the natural recovery and capping areas, Azti's Marine Biotic Index (AMBI) was evaluated as a fine healthy status because it maintained the level of 2nd grades (Good), whereas Benthic Pollution Index (BPI) remained at the 1st and 2nd grade. Therefore, capping of dredged materials for remediation of contaminated sediment in the dumping site has the effect of reducing the pollution level. However, in terms of the benthic ecosystem, it is recommended that the recovery trend should be monitored long-term. Additionally, it is necessary to introduce an adaptive management strategy when expanding the project to remediate the contaminated sediment at the dumping area in the future.

키워드

과제정보

본 연구는 해양수산부 "폐기물 해양배출 종합관리 시스템 구축사업"의 일부로 수행되었습니다. 현장 조사에 많은 도움을 주신 한국해양과학기술원 온누리호 승조원분들께 감사드립니다.

참고문헌

  1. Borja, A., I. Muxika, and J. Franco(2003), The application of marine biotic index to different impact sources affecting soft-bottom benthic communities along European coasts, Marine Pollution Bulletin, Vol. 46, No. 7, pp. 835-845. https://doi.org/10.1016/S0025-326X(03)00090-0
  2. Borja, A., J. Franco, and V. Perez(2000), A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments, Marine Pollution Bulletin, Vol. 40, No. 12, pp. 1100-1114. https://doi.org/10.1016/S0025-326X(00)00061-8
  3. Bray, J. R. and J. T. Curtis(1957), An ordination of the upland forest communities of Southern Wisconsin, Ecological monographs, Vol. 27, No. 4, pp. 325-349. https://doi.org/10.2307/1942268
  4. Bruland, K. W., K. Bertine, M. Koide, and E. D. Goldberg (1974), History of metal pollution in southern California coastal zone, Environmental Science and Technology, Vol. 8, No. 5, pp. 425-432. https://doi.org/10.1021/es60090a01
  5. Chapman, P. M., R. N. Dexter, and E. R. Long(1987), Synoptic measures of sediment contamination, toxicity and infaunal community composition (the Sediment Quality Triad) in San Francisco Bay, Marine Ecology Progress Series, Vol. 37, No. 1, pp. 75-96. https://doi.org/10.3354/meps037075
  6. Choi, J. W., S. M. Hyun, and M. Chang(2003), The summer benthic environmental conditions assessed by the functional groups of macrobenthic fauna in Gwangyang Bay, southern coast of Korea, Korean Journal of Environmental Biology, Vol. 21, No. 2, pp. 101-113.
  7. Choi, J. W., J. Y. Seo, C. H. Lee, T. K. Ryu, C. G. Sung, G. M. Han, and S. M. Hyun(2005), Spatial distribution patterns of macrobenthic communities during winter and summer in the Masan Bay special management area, southern coast of Korea, Ocean and Polar Research, Vol. 27, No. 4, pp. 381-395. https://doi.org/10.4217/OPR.2005.27.4.381
  8. Choi, J. W. and J. Y. Seo(2007), Application of biotic indices to assess the health condition of benthic community in Masan Bay, Korea, Ocean and Polar Research, Vol. 29, No. 4, pp. 339-348. https://doi.org/10.4217/OPR.2007.29.4.339
  9. Clarke, K. R., R. N. Gorley, P. J. Somerfield, and R. M. Warwick(2014), Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition, PRIMER-E:Plymouth, p. 262.
  10. Folk, R. L.(1968), Petrology of sedimentary rocks, Hemphill publishing Co., Austin, Texas, USA, p. 170.
  11. Gray, J. S.(1974), Animal-sediment relationships, In: Barnes, H. B. (Ed.) Oceanography and Marine Biology: An Annual Review, Vol. 12, pp. 223-261.
  12. Gray, J. S. and M. Elliott(2009), Ecology of marine sediments: from science to management, Oxford University Press, Oxford, United Kingdom, p. 225.
  13. Horowitz, A. J.(1991), A primer on sediment-trace element chemistry, 2nd ed., Lewis Publishers Inc., Michigan, p. 136.
  14. Hwang, D. W., S. O. Ryu, S. G. Kim, O. I. Choi, S. S. Kim, and B. S. Koh(2010), Geochemical characteristics of intertidal surface sediments along the southwestern coast of Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 43, No. 2, pp. 146-158. https://doi.org/10.5657/KFAS.2010.43.2.146
  15. Hyun, S. M., T. H. Lee, J. S. Choi, D. L. Choi, and H. J. Woo(2003), Geochemical characteristics and heavy metal pollutions in the surface sediments of Gwangyang and Yeosu Bay, south coast of Korea, The Sea: Journal of the Korean Society of Oceanography, Vol. 8, No. 4, pp. 380-391.
  16. Jang, S. Y. and H. C. Shin(2016), Differences in the community structures of macrobenthic polychaetes from farming grounds and natural habitats in Gamak Bay, Journal of the Korean Society for Marine Environment & Energy, Vol. 19, No. 4, pp. 297-309. https://doi.org/10.7846/JKOSMEE.2016.19.4.297
  17. Jung, R. H., I. S. Seo, W. C. Lee, H. C. Kim, S. R. Park, J. B. Kim, C. W. Oh, and B. M. Choi(2014), Community structure and health assessment of macrobenthic assemblages at spring and summer in Cheonsu Bay, west coast of Korea, The Sea: Journal of the Korean Society of Oceanography, Vol. 19, No. 4, pp. 272-286. https://doi.org/10.7850/JKSO.2014.19.4.272
  18. Kang, K., S. G. Hong, Y. K. Kim, and S. J. Park(2017), Comparison of pipeline and clamshell capping technologies for the remediation of contaminated marine sediments, Journal of Navigation and Port Research, Vol. 41, No. 4, pp. 195-206. https://doi.org/10.5394/KINPR.2017.41.4.195
  19. Kim, J. G. and H. S. Jang(2014), Evaluation of characteristics of particle composition and pollution of heavy metals for bottom sediments in Cheonsu Bay, Korea -comparison of the sediments environment of farming area and non-farming area, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 4, pp. 358-371. https://doi.org/10.7837/kosomes.2014.20.4.358
  20. Kim, K. R. and S. H. Kim(2011), Strategy for the management of contaminated marine sediments, Journal of Korean Environmental Dredging Society, Vol. 1, No. 1, pp. 21-32.
  21. Kim, K. R., S. H. Kim, K. Y. Choi, and C. J. Kim(2011), Case study of monitoring in environmental dredging project, Journal of Korean Environmental Dredging Society, Vol. 1, No. 1, pp. 33-52.
  22. Kim, Y. R., S. J. Lee, J. H. Kim, C. J. Kim, and K. Y. Choi(2018), Thyasira tokunagai as an ecological indicator for the quality of sediment and benthic communities in the East Sea-Byeong, Korea, Marine Pollution Bulletin, Vol. 135, pp. 873-879. https://doi.org/10.1016/j.marpolbul.2018.03.030
  23. Koh, C. H., C. Park, S. J. Yoo, W. J. Lee, T. W. Lee, C. I. Jang, J. K. Choi, J. S. Hong, and H. T. Heo(1997), Marine biology, Seoul National University Press, Seoul, Korea, p. 654.
  24. Lee, J. H., J. Y. Park, H. G. Lee, H. S. Park, and D. S. Kim(2003), Environmental assessment of the Shihwa Lake by using the benthic pollution index, Ocean and Polar Research, Vol. 25, No. 2, pp. 183-200. https://doi.org/10.4217/OPR.2003.25.2.183
  25. Lim, K. H., H. C. Shin, S. M. Yoon, and C. H. Koh(2007), Assessment of benthic environment based on macrobenthic community analysis in Jinhae Bay, Korea, The Sea: Journal of the Korean Society of Oceanography, Vol. 12, No. 1, pp. 9-23.
  26. Margalef, R.(1958), Information theory in ecology, General Systems, 3, pp. 36-71.
  27. ME(1995), Marine environment assessment based on the benthic faunal communities, Management technique for marine environmental protection report, Ministry of Environment, p. 244.
  28. MOF(2006), Establishment of a comprehensive management system for marine discharge of waste (3), Final report, Ministry of Oceans and Fisheries, p. 1242.
  29. MOF(2014), Establishment of a comprehensive management system for marine discharge of waste (11), Final report, Ministry of Oceans and Fisheries, p. 752.
  30. MOF(2017a), Establishment of a comprehensive management system for marine discharge of waste (14), Final report, Ministry of Oceans and Fisheries, p. 674.
  31. MOF(2017b), Quality guidelines for habitat environment of marine biota in Korea, Ministry of Oceans and Fisheries (MOF), Notification No. 2017-109, p. 1.
  32. MOF(2018), Establishment of a comprehensive management system for marine discharge of waste (15), Final report, Ministry of Oceans and Fisheries, p. 557.
  33. Mucha, A. P., M. Teresa, S. D. Vasconcelos, and A. A. Bordalo(2005), Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal), Marine Environmental Research, Vol. 60, No. 5, pp. 531-550. https://doi.org/10.1016/j.marenvres.2004.12.004
  34. Muxika, I., A. Borja and W. Bonne(2005), The suitable of the marine biotic index (AMBI) to new impact sources along European coast, Ecological Indicators, Vol. 5, No. 1, pp. 19-31. https://doi.org/10.1016/j.ecolind.2004.08.004
  35. Park, Y. C., J. W. Yoo, J. S. Young, T. G. Oh, J. R. Kim, M. K. Choe, and O. I. Choi(2019), Adaptive management: a key tool for natural resource management, Journal of Wetlands Research, Vol. 21, No. 4, pp. 267-280. https://doi.org/10.17663/JWR.2019.21.4.267
  36. Pianka, E. R.(1970), On r- and K-selection, The American Naturalist, Vol. 104, No. 940, pp. 592-597. https://doi.org/10.1086/282697
  37. Pielou, E. C.(1966), The measurement of diversity in different types of biological collections, Journal of Theoretical Biology, Vol. 13, pp. 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  38. Sarda, R., S. Pinedo, A. Gremaare, and S. Taboada(2000), Changes in the dynamics of shallow sandy-bottom assemblages due to sand extraction in the Catalan Western Mediterranean Sea, ICES Journal of Marine Science, Vol. 57, No. 5, pp. 1446-1453. https://doi.org/10.1006/jmsc.2000.0922
  39. Shannon, C. E. and W. Weaver(1949), The mathematical theory of communication, University of Illinois Press, Urbana, p. 117.
  40. Simpson, E. H.(1949), Measurement of diversity, Nature, 163, p. 688. https://doi.org/10.1038/163688a0
  41. U.S. EPA(1998), Assessment and remediation of contaminated sediments (ARCS) program, EPA 905-B96-004, Great Lakes National Program Office, Chicago, Illinois, p. 147.
  42. Warwick, R. M.(2001), Evidence for the effects of metal contamination on the intertidal macrobenthic assemblages of the Fal estuary, Marine Pollution Bulletin, Vol. 42, No. 2, pp. 145-148. https://doi.org/10.1016/S0025-326X(00)00120-X
  43. Yim, U. H., S. J. Kim, C. K. Lee, M. K. Kim, J. H. Jung, S. Y. Ha, J. G. An, B. O. Kwon, T. W. Kim, C. H. Lee, O. H. Yu, H. W. Choi, J. S. Ryu, J. S. Khim and W. J. Shim(2020), Rapid recovery of coastal environment and ecosystem to the Hebei Spirit oil spill's impact, Environment International, Vol. 136, 105438. https://doi.org/10.1016/j.envint.2019.105438
  44. Yokoyama, H.(2000), Environmental quality criteria for aquaculture farms in Japanese coastal area: a new policy and its potential problems, Bulletin of National Research Institute of Aquaculture, Vol. 29, pp. 123-134.
  45. Yoon, S. P., R. H. Jung, Y. J. Kim, S. G. Kim, M. K. Choi, W. C. Lee, H. T. Oh, and S. J. Hong(2009), Macrobenthic community structure along the environmental gradients of Ulsan Bay, Korea, The Sea: Journal of the Korean Society of Oceanography, Vol. 14, No. 2, pp. 102-117.
  46. Youn, S. H., J. W. Lee, C. W. Oh, B. M. Choi, K. T. Yoon, J. H. Na, and I. S. Seo(2021), Community structure and health status of macrobenthic animals in the Nakdong River estuary, Busan, Korea, Ocean and Polar Research, Vol. 43, No. 2, pp. 73-88. https://doi.org/10.4217/OPR.2021.43.2.073