DOI QR코드

DOI QR Code

Technical Analysis and Future Development of Liquefied Hydrogen Carriers

액화수소 산적 운반선의 기술성 분석 및 향후 개발 과제

  • Lee, Hyunyong (System Safety Research Team, Korean Register(KR)) ;
  • Kang, Hokeun (Division of Coast Guard Studies, Korea Maritime and Ocean University) ;
  • Roh, Gilltae (System Safety Research Team, Korean Register(KR)) ;
  • Jung, Inchul (System Safety Research Team, Korean Register(KR))
  • 이현용 (한국선급 시스템안전연구팀) ;
  • 강호근 (한국해양대학교 해양경찰학부) ;
  • 노길태 (한국선급 시스템안전연구팀) ;
  • 정인철 (한국선급 시스템안전연구팀)
  • Received : 2022.01.17
  • Accepted : 2022.04.27
  • Published : 2022.04.30

Abstract

Countries worldwide are shifting to a hydrogen economy to respond to stringent environmental regulations, and the transport of hydrogen between countries is expected to increase in the mid- to long-term. Hydrogen is traded between countries in different forms, such as ammonia, liquid hydrogen, and LOHC (Liquid Organic Hydrogen Carrier), on account of the renewable energy resources in exporting countries, the type of hydrogen use in importing countries, and the technological maturity; however, it is not traded only in a singular form. As marine transportation of ammonia and LOHC is a relatively mature technology compared to that of liquid hydrogen, in this article, we analyzed the technical feasibility of liquid hydrogen carriers while identifying detailed technologies required for their future development and securing possible designs through various technical alternatives.

강화되는 환경규제에 대응하기 위해서 세계 각국이 수소 경제로의 전환을 본격화하고 있으며, 이에 중장기적으로 수소의 국가간 물동량도 증가할 것으로 예상된다. 국가간 수소의 거래는 수출국의 신재생 에너지 자원과 수입국의 수소 사용 형태, 기술 성숙도 등을 고려하여 암모니아, 액화수소, LOHC 등의 형태로 이루어질 것이나, 어느 한 가지 형태로만 거래되지는 않을 것이다. 액화수소 대비 암모니아와 LOHC의 해상운송은 상대적으로 성숙한 기술임에 본 글에서는 향후 액화수소 운반선 개발을 위하여 필요한 세부 기술들의 식별 및 다양한 기술적 대안들을 통해 가능한 설계안을 확보하면서, 그에 따른 기술적 타당성을 분석하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20203020040030 & No. 20213030040460 & No. 20213030030290)

References

  1. 3M™ Glass Bubbles K Series S Series(2022), Available online https://multimedia.3m.com/mws/media/619093O/3m-glass-bubbles-types-k-and-s-uk-data-sheet.pdf (accessed on 17 February 2022).
  2. Ahn, J., H. You, J. Ryu, and D. Chang(2017), Strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker, Int. J. Hydrogen Energy, 42(8), pp. 5366-5380. https://doi.org/10.1016/j.ijhydene.2017.01.037
  3. IAA(2017), American Institute of Aeronautics and Astronautics, AIAA Standard - Guide to safety of hydrogen and hydrogen systems, AIAA G-095A.
  4. Alam, M., H. Singh, and M. C. Limbachiya(2011), Vacuum Insulation Panels (VIPs) for building construction industry-A review of the contemporary developments and future directions. Applied energy, 88(11), pp. 3592-3602. https://doi.org/10.1016/j.apenergy.2011.04.040
  5. Choi, B. I.(2020), Liquid hydrogen-based hydrogen society infrastructure establishment plan. Superconductivity and Cryogenics, 22(1), pp. 9-12.
  6. Farid, M., M. Keen, M. Papaioannou, I. Parry, C. Pattillo, A. Ter-Martirosyan, and other IMF Staff(2016), After Paris: fiscal, macroeconomic, and financial implications of climate change, IMF Staff Discussion Note, SDN/16/01, International Monetary Fund.
  7. Fesmire, J. E.(2015), Standardization in cryogenic insulation systems testing and performance data, Physics Procedia 67, 2015, pp. 1089-1097. https://doi.org/10.1016/j.phpro.2015.06.205
  8. Fesmire, J. E., J. P. Sass, Z. Nagy, S. J. Sojourner, D. L. Morris, and S. D. Augustynowicz(2008), Cost-efficient storage of cryogens. In AIP Conference Proceedings, Vol. 985, No. 1, pp. 1383-1391, American Institute of Physics.
  9. GTT Mark III systems(2021), Available online: https://gtt.fr/technologies/markiii-systems (accessed on 25 July 2021).
  10. Guidelines for Ships carrying Liquefied Hydrogen in Bulk (2021), Available online: https://www.krs.co.kr (accessed on 25 July 2021).
  11. Heuser, P. M., D. S. Ryberg, T. Grube, M. Robinius, and D. Stolten(2019), Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen. International journal of hydrogen energy, 44(25), pp. 12733-12747. https://doi.org/10.1016/j.ijhydene.2018.12.156
  12. HSE(2010), Health and Safety Executive, Hazards of liquid hydrogen,.
  13. IEA(2019), The Future of Hydrogen: Seizing Today's Opportunities. Report prepared by the IEA for the G20, 82-83, Japan.
  14. Ishimoto, Y., M. Voldsund, P. Neksa, S. Roussanaly, D. Berstad, and S. O. Gardarsdottir(2020), Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. International Journal of Hydrogen Energy, 45(58), pp. 32865-32883. https://doi.org/10.1016/j.ijhydene.2020.09.017
  15. ISO/TR 15916(2015), Basic consideration for the safety of hydrogen systems (ISO).
  16. Kamiya, S., M. Nishimura, and E. Harada(2015), Study on introduction of CO2 free energy to Japan with liquid hydrogen, Physics Procedia, 67, pp. 11-19. https://doi.org/10.1016/j.phpro.2015.06.004
  17. KHI(2021), https://global.kawasaki.com/en/corp/newsroom, accessed 24 July 2021.
  18. Lee, H., Y. Shao, S. Lee, G. Roh, K. Chun, and H. Kang(2019), Analysis and assessment of partial re-liquefaction system for liquefied hydrogen tankers using liquefied natural gas (LNG) and H2 hybrid propulsion. International Journal of Hydrogen Energy, 44(29), pp. 15056-15071. https://doi.org/10.1016/j.ijhydene.2019.03.277
  19. Makesat(2021), Multi Layer Insulation, Available online: https://makesat.com (accessed on 25 July 2021).
  20. Pfundstein, M., R. Gellert, M. Spitzner, and A. Rudolphi (2012), Insulating materials: principles, materials, applications, Walter de Gruyter.
  21. Seatrade Maritime(2021), World's first large size liquified hydrogen carrier gets AiP, https://www.seatrade-maritime.com/ (accessed on 29 April 2022).
  22. Takaoka, Y., H. Kagaya, A. Saeed, and M. Nishimura(2017), Introduction to a Liquefied Hydrogen Carrier for a Pilot Hydrogen Energy Supply Chain (HESC) project in Japan. Kawasaki Heavy Industries, Ltd.
  23. Wartsila(2021), WSD59 10K LNG BUNKERING VESSEL, Available online: https://cdn.wartsila.com (accessed on 25 July 2021).
  24. Wijayanta, A. T., T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz(2019), Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review, International Journal of Hydrogen Energy, 44(29), pp. 15026-15044. https://doi.org/10.1016/j.ijhydene.2019.04.112