DOI QR코드

DOI QR Code

Agricultural Characteristics of Inbred Korean Waxy Corn Lines and Relationships

국내 찰옥수수 계통의 농업형질 특성 및 연관 연구

  • Jun Young Ha (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Young Sam Go (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jae Han Son (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Beom Young Son (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Tae Wook Jung (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hwan Hee Bae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 하준영 (농촌진흥청 국립식량과학원 중부작물부 ) ;
  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부 ) ;
  • 손재한 (농촌진흥청 국립식량과학원 중부작물부) ;
  • 손범영 (농촌진흥청 국립식량과학원 중부작물부 ) ;
  • 정태욱 (농촌진흥청 국립식량과학원 중부작물부 ) ;
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부)
  • Received : 2022.10.19
  • Accepted : 2022.11.10
  • Published : 2022.12.01

Abstract

Waxy corn (Zea mays L.), which contains homozygous mutant alleles for the waxy1 (wx1) gene, is widely consumed as a snack food in Asia. This study evaluated sixteen agronomic characteristics of inbred Korean waxy corn lines to aid development of high-quality waxy corn cultivars. The plant materials studied were 177 inbred waxy corn lines developed by the National Institute of Crop Science, Rural Development Administration, Republic of Korea. For the tested lines, days to tasseling and silking averaged 77.69±2.22 days (with a range of 56-97 days), and 81.12±7.56 days (66-99 days), respectively. Plant length ranged from 88 to 237 cm (averaged 164.88±22.67 cm), ear length averaged 11.75±2.52 cm (5.0-18.5 cm), and ear width averaged 2.94±0.68 cm (1.4-4.5 cm). The number of rows on each ear of corn averaged 12.22±2.22 (7-32 rows) and the kernel number averaged 24.30±4.22 (9-37 kernels) per row. The crude protein content was 12.05±1.53% (8.90-21.80%) and total starch content was 69.27±5.74% (49.5-83.9%). Principal component analysis revealed that ear width, grain length, ear length, days to tasseling, days to silking, percentage of ear setting height, and total starch are features that allow distinction between the 177 waxy inbred corn lines. Hierarchical cluster analysis identified twelve waxy inbred lines that produce tall plants and have a short silking period. These lines may improve yield among quickly growing corn varieties.

본 연구는 국립식량과학원에서 고품질 내재해성 찰옥수수 품종 개발을 위해 육성한 177개의 흰찰옥수수, 노랑찰옥수수, 검정찰옥수수 자식계통을 이용하여 16개 농업형질에 대해 평가하여 우수 계통 선발 및 품종 개방을 위한 기초 자료로 이용하고자 수행하였다. 1. 흰찰옥수수, 노랑찰옥수수, 검정찰옥수수 자식계통의 16개 농업형질을 조사한 결과 전체 계통의 평균 출웅일수는 77.69±2.22일, 출사일수 81.12±7.56일, 초장 164.88±22.67 cm, 간장 124.61±24.62 cm, 착수고율 49.34±9.08%, 옆폭 7.53±1.45 cm, 이삭길이 11.75±2.52 cm, 이삭폭 2.94±0.68 cm, 이삭열수 12.22±2.22열, 종자길이 7.75±1.08 mm, 종자너비 7.42±0.68 mm, 종자두께 5.06±0.68 mm, 이삭착립장 11.79±2.13 cm, 열당 종자수 24.30±4.22립, 조단백질 12.05±1.53%, 총 전분 69.27±5.74%로 조사되었다. 2. 16개 농업형질 간의 상관관계 분석결과 출웅일수와 출사일수 간의 상관관계가 0.896으로 가장 높게 나타났다. 초장과 간장 간의 상관관계가 0.740로, 이삭착립장과 이삭 열당 종자수도 0.675로 상관관계가 다음으로 높았다. 3. 주성분 분석 결과 16개의 농업형질 중에서 이삭폭, 종자길이, 이삭길이, 출웅일수, 출사일수, 착수고율, 총 전분이 177개 옥수수 자식계통을 식별하는데 유용한 형질들인 것으로 나타났다. 4. 계층 군집분석을 통해 초장이 크고 동시에 출사일수가 짧은 흰찰 자식계통 7개(KW34, KW37, KW83, KW84, KW100, KW103), 검정찰 자식계통 1개(KBW33), 노랑찰 자식계통 4개(KY11, KY23, KY26, KY34)를 선발하였다. 이 계통들은 수량성이 높은 조생종 찰옥수수 품종을 개발하는데 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제명: 찰옥수수 자식계통 육성 및 생산력검정시험, 세부과제번호: PJ01680603)의 지원에 의해 이루어진 것임.

References

  1. Almeida, B. M., L. L. Feitoza, A. C. A. Lopes, R. L. F. Gomes, R. C. Almeida, L. V. Martins, and V. B. Silva. 2022. Morphological diversity among Brazilian Capsicum peppers. Cienc Rural 53 : e20210559
  2. Alvi, M. B., M. Rafique, M. S. Tariq, A. Hussain, T. Mahmood, and M. Sarwar. 2003. Character association and path coefficient analysis of grain yield and yield components maize (Zea mays L.). Pak. J. Biol. Sci. 6 : 126-138.
  3. Baek, S. B., B. Y. Son, J. T. Kim, H. H. Bae, Y. S. Go, and S. L. Kim. 2020. Changes and Prospects in the Development of Corn Varieties in Korea. Korean J. Breed Sci. 52 : 93-102.
  4. Barth, E., J. T. V. de Resende, K. H. Mariguele, M. D. V. de Resende, A. da Silva, and S. Ru. 2022. Multivariate analysis methods improve the selection of strawberry genotypes with low cold requirement. Sci. Rep. 12 : 11458.
  5. Barth, E., J. T. V. Resende, A. F. P. Moreira, K. H. Mariguele, A. R. Zeist, M. B. Silva, G. C. G. Stulzer, J. G. M. Mafra, L. S. A. Goncalves, S. R. Roberto, and K. Youssef. 2020. Selection of Experimental Hybrids of Strawberry Using Multivariate Analysis. Agronomy (Basel) 10 : 598.
  6. Baute, J., D. Herman, F. Coppens, J. De Block, B. Slabbinck, M. Dell'Acqua, M. E. Pe, S. Maere, H. Nelissen, and D. Inze. 2015. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol. 16 : 168.
  7. Bocanski, J., Z. Sreckov, and A. Nastasic. 2009. Genetic and phenotypic relationship between grain yield and components of grain yield of maize (Zea mays L.). Genetika 41 : 145-154. https://doi.org/10.2298/GENSR0902145B
  8. Etheridge, R. D., G. M. Pesti, and E. H. Foster. 1998. A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Anim. Feed Sci. Technol. 73 : 21-28. https://doi.org/10.1016/S0377-8401(98)00136-9
  9. Gong, K. and L. Chen. 2013. Characterization of Carbohydrates and Their Metabolizing Enzymes Related to the Eating Quality of Postharvest Fresh Waxy Corn. J. Food Biochem. 37 : 619-627. https://doi.org/10.1111/jfbc.12015
  10. Lee, I. S. and J. O. Park. 2003. Assessment and Classification of Korean Indigenous Corn Lines by Application of Principal Component Analysis. Kor. J. Life Sci. 13 : 343-348. https://doi.org/10.5352/JLS.2003.13.3.343
  11. Lee, J. S., H. H. Bae, J. T. Kim, B. Y. Son, S. B. Baek, S. L. Kim, Y. S. Go, G. Yi, and S. H. Shin. 2020. 'Hwanggeummatchal', a Single Cross Hybrid Waxy Corn with High Carotenoid Content and Good Eating Quality. Korean J. Breed Sci. 52 : 467-472. https://doi.org/10.9787/KJBS.2020.52.4.467
  12. Nelson, O. and D. Pan. 1995. Starch synthesis in maize endosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46 : 475-496. https://doi.org/10.1146/annurev.pp.46.060195.002355
  13. Pang, Z., G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu, and J. Xia. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17 : 1735-1761. https://doi.org/10.1038/s41596-022-00710-w
  14. Park, S. U., K. Y. Park, S. W. Cha, Y. H. Son, R. K. Park, S. H. Song, J. K. Hong, and U. H. Kim. 1992. A new early maturing and high quality single cross waxy corn hybrid "Chalok 1". Research Reports of the Rural Development Administration, Upland & Industrial Crops 34 : 61-64.
  15. Rural Development Administration (RDA). 2012. Agricultural science technology standards for investigation of research. pp. 366-385.
  16. Ryu, S. H., J. Y. Park, N. K. Huh, and H. K. Min. 2001. Relationship between genentic distance and hybrid performance of black waxy corn (Zea mays L.). Korean J. Breed Sci. 33 : 95-103.
  17. Simla, S., K. Lertrat, and B. Suriharn. 2010. Carbohydrate Characters of Six Vegetable Waxy Corn varieties as Affected by Harvest Time and Storage Duration. Asian J. Plant Sci. 9 : 463-470. https://doi.org/10.3923/ajps.2010.463.470
  18. Wu, X., W. Long, D. Chen, G. Zhou, J. Du, S. Wu, and Q. Cai. 2022. Waxy allele diversity in waxy maize landraces of Yunnan Province, China. J. Integr. Ag. 21 : 578-585. https://doi.org/10.1016/S2095-3119(20)63471-2
  19. Yu, J. K. and Y. S. Moon. 2021. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants 11 : 92.