References
- Bennert, T.A., Maher, A. and Jafari, F. (2005), "Piezocone evaluation of a shallow soil-bentonite slurry wall", Proceedings of the Geo-Frontiers Congress 2005, Austin, Texas, United States, January. https://doi.org/10.1061/40789(168)43.
- Canizo, L. (1975), "Las pantallas impermeabilizantes de bentonite cemento", Boletin de informacion dels Laboratorio Transporte y Mechanica del Suelo, No.110, Madrid, July.
- Card, G.B. (1981), "The properties and performance of bentonite-cement slurries for use as hydraulic cut-offs", Ph.D. Dissertation, University of London, London.
- Caron, C. (1972), "Perennite des systemes argile-ciment ou bentonite-ciement dans leur divers types d'applications", Construct., 27(10). Paris, 291-296.
- Caron, C. (1973), "Un nouveau style de perforation: la boue autodurcissable", Annales de I'Institut Technique du Batiment et des Travaux Publics, 26(311), Paris, 1-40.
- Du, Y.J. and Fan, R.D. (2011), "Compressibility and permeability behavior of two types of amended soil-bentonite vertical cutoff wall backfills", Rock and Soil Mechanics, 49-54.
- Fernandez, F. and Quigley, R.M. (2011), "Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons", Can. Geotech. J., 22(2), 205-214. https://doi.org/10.1139/t85-028.
- Fukushima, Y. (1984), "X-ray diffraction study of aqueous montmorillonite emulsions", Clays Clay Min., 32(4), 320-326. https://doi.org/10.1346/CCMN.1984.0320410.
- Garvin, S.L. and Hayles, C.S. (1999), "The chemical compatibility of cement-bentonite cut-off wall material", Constr. Build. Mater., 13(6), 329-341. https://doi.org/10.1016/S0950-0618(99)00024-0.
- Guner, A. (1979), "Properties and behaviour of bentonite-cement slurries", Ph.D. Dissertation, University of London, London.
- Huang, X., Li, J., Xue, Q. Chen, Z., Du, Y., Wan, Y., Liu, L. and Poon, C.S. (2021), "Use of self-hardening slurry for trench cutoff wall: A review", J. Constr. Build. Mater., 286(7), 1-15. https://doi.org/10.1016/j.conbuildmat.2021.122959.
- Huang, X., Li, J., Guo, M., Xue, Q., Du, Y., Wan, Y., Liu, L. and Poon, C.S. (2021), "Using MgO activated slag and calcium bentonite slurry to produce a novel vertical barrier material: Performances and mechanisms", J. Constr. Build. Mater., 291(12), 1-15. https://doi.org/10.1016/j.conbuildmat.2021.123365.
- ICE (1999), "Specification for the construction of slurry trench cut-off walls: As barriers to pollution migration", CIRIA Report Institution of Civil Engineers, Thomas Telford, London.
- Jefferis, S.A. (1997), "The origins of the slurry trench cut-off and a review of cement-bentonite cut-off walls in the UK", International containment technology conference and exhibition, 52~61. United States. https://www.osti.gov/servlets/purl/576479.
- Jo, H.Y., Katsumi, T., Benson, C.H. and Edil, T.B. (2001), "Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions", J. Geotech. Geoenviron. Eng., 217(7), 557-567. https://doi.org/10.1061/(ASCE)1090-241(2001)127:7(557).
- Joshi, K., Kechavarzi, C., Sutherland, K., Ng, M.Y.A., Soga, K. and Tedd, P. (2010), "Laboratory and in situ tests for long-term hydraulic conductivity of a cement-bentonite cutoff wall", J. Geotech. Geoenviron. Eng., 136(4), 562-572. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000248.
- Kim, D.H. and Park, K.H. (2019), "Study on characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361.
- Kim, G.R., Kim, I.C., Yun, T.S. and Lee, J.H. (2021), "Effects of freezing and thawing on retaining wall with changes in groundwater level", Geomech. Eng., 24(6), 531-543. https://doi.org/10.12989/gae.2021.24.6.531.
- Kim, Y.S. and Moon, J.S. (2020), "Change of groundwater inflow by cutoff grouting thickness and permeability coefficient", Geomech. Eng., 21(2), 165-170. https://doi.org/10.12989/gae.2020.21.2.165.
- Kolstad, D.C., Benson, C.H. and Edil, T.B. (2004), "Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions", J. Geotech. Geoenviron. Eng., 130(12), 1236-1249. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1236).
- KS F 2103(2018), Standard test methods for pH of soils, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS F 2314(2018), Standard test methods for unconfined compression test of soils, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS F 2322(2020), Standard test methods for permeability of saturated soils, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS K 0767(2021), Test method for chemical resistance of geogrids to liquids, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS L 4007(2016), Methods for chemical analysis of clay, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS L 5201(2021), Portland cement, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- KS L ISO 9597(2019), Determination of setting time and soundness of cements, Korean Agency for Technology and Standards; Maengdong-myeon, Korea.
- Millet, R.A. and Perez, J.Y. (1981), "Current USA Practices: Slurry Wall Specifications", J. Geotech. Eng., 107(8), 1041-1056. https://doi.org/10.1061/AJGEB6.0001174.
- Opdyke, S.M. and Evans, J.C. (2005), "Slag-cement-bentonite slurry walls", J. Geotech. Geoenviron. Eng., 131(6), 637-681. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(673).
- Qian Xuede, Z.W., Shengwei, W. et al. (2017), "Design and construction of protective barriers for waste containments and contamined sites", Beijing, China Science Press.
- Reclamation Design Standards (2014), "Design Standards No. 13: Embankment Dams," Chapter 16 Cutoff walls, U.S. Department of Interior, Bureau of Reclamation, Technical Service Center, Denver, CO.
- Royal, A.C.D., Opukumo, A.W., Qadr, C.S., Perkins, L.M. and Walenna, M.A. (2018), "Deformation and compression behaviour of a cement-bentonite slurry for groundwater control applications", Geotech. Geol. Eng., 36, 835-853. https://doi.org/10.1007/s10706-017-0359-9.
- Ryan, C.R. and Spaulding, C.A. (2008), "Strength and permeability of a deep soil bentonite slurry wall", Proceedings of the Geotechnical Engineering Congress 2008, New Orleans, Louisiana, U.S., March, 644-651. https://doi.org/10.1061/40970(309)81.
- Sarvaiya, J., Agrawal K.Y. and Bakre L. (2017), "Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review", J. Drug Delivery Sci. Tech., 39, 200-209. https://doi.org/10.1016/j.jddst.2017.03.023.
- Scalia, J., Benson, C.H., Bohnhoff, G.L., Edil, T.B. and Shackelford, C.D. (2014), "Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions", J. Geotech. Geoenviron. Eng., 140(3). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
- Sharma, H. (2004), Geoenvironmental Engineering: Site Remediation, Waste Containment and Emerging Waste Management Technologies, John willey & Sons, Inc., New Jersey, U.S.
- Snoeck, D., Jensen, O.M. and De Belie, N. (2015), "The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials", Cement Concrete Res., 74, 59-67. https://doi.org/10.1016/j.cemconres.2015.03.020.
- Teltayev, B.B. and Suppes, E.A (2017), "Regularities for temperature variation in subgrade of highway", Geomech. Eng., 13(5), 793-807. https://doi.org/10.12989/gae.2017.13.5.793.
- Xanthakos, P.P. (1979), Slurry walls, McGraw Hill Punlishers, New York, U.S.
- Yiduo, W. (2017), "Laboratory and in situ tests for hydraulic conductivity of sand/silt bentonite cutoff walls", Ph.D. Dissertation, Zhejiang University, Hangzhou, China.
- Yun, S.Y., An, H.K., Oh, M.A. and Lee, J.Y. (2019), "A study on the evaluation of permeability and structure for calcium bentonite-sand mixtures", J. Korean Geosynthetics Soc., 18(2), 1-10. https://doi.org/10.12814/jkgss.2019.18.2.001.
- Zhang, D., Cai, X. and Hu, L. (2018), "Effect of curing temperature on hydration of calcium aluminate cement-calcium sulfate-limestone system", J. Mater. Civil Eng., 30(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002444.
- Zhang, R.J., Lu, Y.T., Tan, T.S., Phoon, K.K. and Santoso, A.M. (2014), "Long-term effect of curing temperature on the strength behavior of cement-stabilized clay", J. Geotech. Geoenviron. Eng., 140(8). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001144.
- Zhu, Q.Y., Jin, Y.F., Shang, X.Y. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. https://doi.org/10.12989/gae.2019.18.2.133.