DOI QR코드

DOI QR Code

Effects of LED Light Quality on the Growth and Leaf Color of Orostachys japonica and O. boehmeri

LED 광질이 바위솔과 자질연화바위솔의 생장과 엽색에 미치는 영향

  • Lee, Jae Hwan (Department of Environmental Horticulture, Graduate School of Sahmyook University) ;
  • Soh, Soon Yil (Natural Science Research Institute, Sahmyook University) ;
  • Kim, Hyeon Jin (Department of Environmental Horticulture, Graduate School of Sahmyook University) ;
  • Nam, Sang Yong (Department of Environmental Horticulture, Graduate School of Sahmyook University)
  • 이재환 (삼육대학교 대학원 환경원예학과) ;
  • 소순일 (삼육대학교 자연과학연구소) ;
  • 김현진 (삼육대학교 대학원 환경원예학과) ;
  • 남상용 (삼육대학교 대학원 환경원예학과)
  • Received : 2022.02.08
  • Accepted : 2022.04.24
  • Published : 2022.04.30

Abstract

Plants under the genus Orostachys have been known as medicinal plants. This study deems to determine the growth and leaf color of Orostachys japonica and O. boehmeri when subjected to various LED light sources. A total of seven LED light treatments were used, i.e. red (630 nm), green (520 nm), blue (450 nm), purple (650 and 450 nm), 3000 K white (455, 600 nm), 4100 K white (455, 590 nm), and 6500 K white (450, 545 nm) LEDs. Results showed that O. japonica plants showed favorable growth under 4100 K white LED, while O. boehmeri plants had a positive growth response under white light LEDs (3000, 4100, and 6500 K). In leaf color analysis, the use of green LED showed the greatest change in CIELAB L* and b* values which were relatively higher compared to other treatments indicating that leaves turned yellowish. Further statistical analysis using Pearson's correlation also suggested that there is a small negative association between dry weight and b* values of O. japonica, and a negative moderate association between plant weights (fresh and dry weight) and leaf color (L* and b*) and positive association between said plant weights and a* color values of O. boehmeri. Therefore, it is recommended to cultivate O. japonica under 4100 K white LED and O. boehmeri under 3000, 4100, 6500 K white LEDs.

바위솔속(Orostachys) 식물들은 예로부터 와송이라는 이름의 약용식물로 사용되어 왔다. 본 연구에서는 다양한 LED를 활용하여 바위솔(Orostachys japonica)과 자질연화바위솔(O. boehmeri)의 생장 및 엽색에 관한 분석을 수행하였는데 적색 LED(630nm), 녹색 LED(520nm), 청색 LED(450nm), 식물등 LED(보라색)(650, 450nm), 3000K 백색 LED(전구색)(455, 600nm), 4100K 백색 LED(주백색)(455, 590nm), 6500K 백색 LED(주광색)(450, 545nm)를 활용하여 총7가지 처리구로 나누어 실험하였다. 결과적으로 바위솔은 4100K 백색 LED 처리구에서 가장 우수한 생장 수준을 나타내었으며 자질연화바위솔은 3000, 4100, 6500K의 다양한 백색 LED에 적응이 가능할 것으로 생각된다. 엽색에 관한 분석에서는 바위솔과 자질연화바위솔 모두 녹색 LED 처리구에서 가장 많은 변화를 나타내었는데 L*과 b* 값이 다른 처리구에 비해 상대적으로 높게 나타나 잎이 황화된 것으로 평가되었다. 추가로 생장과 엽색 간의 상관관계를 분석한 결과 바위솔은 식물의 생장과 엽색 간의 상관관계는 거의 없는 것으로 나타났으며 자질연화바위솔은 식물체의 생장과 L*, b* 사이에서 음의 상관관계를 나타내었고 a*와는 양의 상관관계를 나타내었다. 따라서 바위솔은 4100K 백색 LED 하에서 재배할 것을 권장하며 자질연화바위솔은 3000, 4100, 6500K의 백색 LED 하에서 재배할 것을 권장한다.

Keywords

Acknowledgement

본 연구는 삼육대학교 교내연구비 지원과 국립농업과학원 농업유전자원센터 시설관리비 지원에 의해 수행되었음. 연구에 사용된 식물유전자원 바위솔(Orostachys japonica, 유전자원번호 IT317333)은 국립농업과학원 농업유전자원센터로부터 분양받아 활용하였음.

References

  1. Cabahug R.A.M., S.Y. Soh, and S.Y. Nam 2017a, Effects of light intensity on the growth and anthocyanin content of Echeveria agavoides and E. marcus. Flower Res J 25:262-269. doi:10.11623/frj.2017.25.4.11
  2. Cabahug R.A.M., S.Y. Soh, and S.Y. Nam 2017b, Effects of shading on the growth, development, and anthocyanin content of Echeveria agavoides and E. marcus. Flower Res J 25:270-277. doi:10.11623/frj.2017.25.4.12
  3. Chaudhary P., A.K. Chaudhari, A.N. Cheeran, and S. Godara 2012, Color transform based approach for disease spot detection on plant leaf. Int J Comput Sci Telecommun 3:65-70.
  4. Choi S.Y., M.J. Kil, Y.S. Kwon, J.A. Jung, and S.K. Park 2012, Effect of different light emitting diode (LED) on growth and flowering in Chrysanthemun. Flower Res J 20:128-133. (in Korean)
  5. Chon Y.S., S.W. Lee, K.J. Jeong, S.H. Ha, J.H. Bae, and J.G. Yun 2011, Growth and quality affected by light intensity, potting media and fertilization level in potted Orostachys 'Nungyu bawisol'. J Bio-Env Con 20:357-364. (in Korean)
  6. Colours of the Royal Horticultural Society Colour Charts Edition V System (RHSCCS) 2022, Turquoise-green. Colours of the Royal Horticultural Society Colour Charts Edition V in sRGB, CIE L*a*b* (CIE Lab) and CIE L*C*h* (CIE LCh) system. Available via http://rhscf.orgfree.com/c.html Accessed 08 January 2022.
  7. Commission Internationale de l'Eclairage (CIE) 2004, CIE 15: Technical report: colorimetry, 3rd edition, Vienna, Austria.
  8. De Keyser E., E. Dhooghe, A. Christiaens, M. Van Labeke, and J. Van Huylenbroeck 2019, LED light quality intensifies leaf pigmentation in ornamental pot plants. Sci Hortic 253: 270-275. doi:10.1016/j.scienta.2019.04.006
  9. De Melo G.O., D.D.C. Malvar, F.A. Vanderlinde, F.F. Rocha, P.A. Pires, E.A. Costa, L.G.D. Matos, C.R. Kaiser, and S.S. Costa 2009, Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J Ethnopharmac 124:228-232. doi:10.1016/j.jep.2009.04.024
  10. Hong D.O., C.W. Lee, H.Y. Kim, J.H. Kang, Y.S. Ryu, and S.C. Shin 2006, Shading effect on growth and flowering of Orostachys japonicus A. Berger. Korean J Med Crop Sci 14:239-243. (in Korean)
  11. Jeong K.J., Y.S. Chon, S.H. Ha, and J.G. Yun 2013, Optimum light intensity, media and fertilization for potted Orostachys malacophyllus from Taebaek. Flower Res J 21:46-51. (in Korean) doi:10.11623/frj.2013.21.2.13
  12. Kang J.H., S.H. Jeon, S.Y. Yoon, D.O. Hong, and S.C. Shin 2005a, Effect of different temperatures on growing and flowering of Orostachys japonicus A. Berger. Korean J Med Crop Sci 13:186-189. (in Korean)
  13. Kang J.H., S.H. Jeon, S.Y. Yoon, D.O. Hong, S.C. Shin 2005b, Growth and flowering of Orostachys japonicus A. Berger by controlling daylengths. Korean J Med Crop Sci 13:114-117. (in Korean)
  14. Kim D.W., K.H. Son, H.W. Chang, K. Bae, S.S. Kang, and H.P. Kim 2004a, Anti-inflammatory activity of Sedum kamtschaticum. J Ethnopharmac 90:409-414. https://doi.org/10.1016/j.jep.2003.11.005
  15. Kim H.H., R.M. Wheeler, J.C. Sager, and G.D. Goins 2004b, A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hortic 659:467-475. doi:10.17660/ActaHortic.2004.659.62
  16. Kim S.J., G.J. Bok, and J.S. Park 2018a, Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. Protected Hortic Plant Fac 27:260-268. (in Korean) doi:10.12791/KSBEC.2018.27.3.260
  17. Kim S., J. Kim, and W. Oh 2018b, Propagation efficiencies at different LED light qualities for leaf cutting of six Echeveria cultivars in a plant factory system. Protected Hortic Plant Fac 27:363-370. (in Korean) doi:10.12791/KSBEC.2018.27.4.363
  18. Lee C.W., S.H. Jeon, H.Y. Kim, S.C. Shin, and J.H. Kang 2007, Effects of growth and flowering on Orostachys japonicus A. Berger by nitrogen fertilization. Korean J Med Crop Sci 15:429-433. (in Korean)
  19. Lee J.H., H.B. Kim, and S.Y. Nam 2022, Evaluation of the growth and leaf color of indoor foliage plants under high temperature and continuous lighting conditions at different light intensity. J Agric Life Environ Sci 34:26-36. (in Korean) doi:10.22698/jales.20220004
  20. Lee J.H., R.A.M. Cabahug, N.H. You, and S.Y. Nam 2021a, Chlorophyll fluorescence and growth evaluation of ornamental foliage plants in response to light intensity levels under continuous lighting conditions. Flower Res J 29:153-164. doi:10.11623/frj.2021.29.3.05
  21. Lee J.H., Y.S. Lim, and S.Y. Nam 2021b, Optimization of shading levels, potting media, and fertilization rates on the vegetative growth of Sedum zokuriense Nakai. Flower Res J 29:239-246. doi:10.11623/frj.2021.29.4.04
  22. Lee J.S., U.K. Nath, G. Goswami, and I.S. Nou 2017, Assessment of different growing conditions for enhanced postharvest quality and shelf-life of leaf lettuce (Lactuca sativa L.) Agron Res 15:1944-1955. doi:10.15159/ar.17.062
  23. Lee M.O., S.M. Park, E.K. Cho, J.H. An, and E.Y. Choi 2018, Changes of plant growth, leaf morphology and cell elongation of Spinacia oleracea grown under different light-emitting diodes. Protected Hortic Plant Fac 27:222-230. (in Korean) doi:10.12791/KSBEC.2018.27.3.222
  24. Lee N.R., and S.Y. Lee 2014, Growth and tuber yield of sweet potato slips grown under different light-emitting diodes. Protected Hortic Plant Fac 23:356-363. (in Korean) doi:10.12791/KSBEC.2014.23.4.356
  25. Nam S.Y., H.S. Lee, S.Y. Soh, and R.A.M. Cabahug 2016, Effects of supplementary lighting intensity and duration on hydroponically grown Crassulaceae species. Flower Res J 24:1-9. doi:10.11623/frj.2016.24.1.1
  26. Park H.M., and A.K. Lee 2021, Comparative analysis of quality of standard cut flowers of Rosa hybrida L. distributed in Korea. Flower Res J 29:263-271. (in Korean) doi:10.11623/frj.2021.29.4.07
  27. Park S.Y., and M.M. Oh 2021, Enhancement of Crepidiastrum denticulatum production using supplemental far-red radiation under various white LED lights. J Bio-Env Con 30:149-156. (in Korean) doi:10.12791/KSBEC.2021.30.2.149
  28. Park S.Y., J.W. Chung, S.Y. Soh, and S.Y. Nam 2015, Effect of several supplemental lighting on growth of Crassula ovata in winter season. Flower Res J 23:86-91. (in Korean) doi:10.11623/frj.2015.23.2.14
  29. Park Y.J., and E.S. Runkle 2018, Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. PLoS One 13:e0202386. doi:10.1371/journal.pone.0202386
  30. Phansurin W., T. Jamaree, and S. Sakhonwasee 2017, Comparison of growth, development, and photosynthesis of Petunia grown under white or red-blue LED lights. Korean J Hortic Sci Technol 35:689-699. doi:10.12972/kjhst.20170073
  31. Royal Botanic Gardens, Kew (RBGK), and Missouri Botanical Garden (MBG) 2022, Orostachys. The Plant List. Available via http://www.theplantlist.org/tpl1.1/search?q=Orostachys Accessed 08 January 2022
  32. Shin D.Y., Y.M. Lee, and H.J. Kim 1994, Anatomy and artificial seed propagation in anti-cancer plant Orostachys japonicus A. Berger. Korean J Crop Sci 39:146-157. (in Korean)
  33. Sukmana S.E., and F.Z. Rahmanti 2017, Blight segmentation on corn crop leaf using connected component extraction and CIELAB color space transformation. International Seminar on Application for Technology of Information and Communication (iSemantic) pp 205-208. doi:10.1109/ISEMANTIC.2017.8251870
  34. Terashima I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi 2009, Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684-697. doi:10.1093/pcp/pcp034
  35. Xie C., J. Tang, J. Xiao, X. Geng, and L. Guo 2022, Purple light-emitting diode (LED) lights controls chlorophyll degradation and enhances nutraceutical quality of postharvest broccoli florets. Sci Hortic 294:110768. doi:10.1016/j.scienta.2021.110768
  36. Yoo E.A., S.J. Lee, S.G. Lee, J.H. Kang, and S.C. Shin 2006, Total phenol contents and antioxidant activity in Orostachys japonicus A. Berger grown under various cultivation conditions. Korean J Med Crop Sci 14:234-238. (in Korean)
  37. Zettl A. 2022, Converting Colors. Converting Colors Website. Available via https://convertingcolors.com Accessed 13 Jan. 2022.