DOI QR코드

DOI QR Code

Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures

  • Cui, Liqi (Institute of Opto-Electronic Information Science and Technology, Yantai University) ;
  • Niu, Ruifeng (Institute of Opto-Electronic Information Science and Technology, Yantai University) ;
  • Wang, Weitian (Institute of Opto-Electronic Information Science and Technology, Yantai University)
  • 투고 : 2022.01.06
  • 심사 : 2022.03.22
  • 발행 : 2022.04.27

초록

In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z* -plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M*-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.

키워드

참고문헌

  1. M. Mosaddeq-ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu and M. Umeno, J. Appl. Phys., 88, 4634 (2000). https://doi.org/10.1063/1.1290456
  2. C. C. Hsieh, K. H. Wu, J. Y. Juang, T. M. Uen, J.-Y. Lin and Y. S. Gou, J. Appl. Phys., 92, 2518 (2002). https://doi.org/10.1063/1.1499522
  3. Y. Paz, Z. Luo, L. Rabenberg and A. Heller, J. Mater. Res., 10, 2842 (1995). https://doi.org/10.1557/JMR.1995.2842
  4. C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 60, 201 (2007). https://doi.org/10.1016/S0927-0248(99)00088-4
  5. Y.-S. Song, M.-H. Lee, B.-Y. Kim and D. Y. Lee, J. Ceram. Process. Res., 20, 182 (2019). https://doi.org/10.36410/JCPR.2019.20.2.182
  6. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel and A. J. Frank, J. Phys. Chem. B, 101, 2576 (1997). https://doi.org/10.1021/jp962377q
  7. M. Ferroni, M. C. Carotta, V. Guidi, G. Martinelli, F. Ronconi, O. Richard, D. V. Dyck and J. V. Landuyt, Sensor. Actuator. B: Chem, 68, 140 (2000). https://doi.org/10.1016/S0925-4005(00)00474-3
  8. A. Ito, H. Masumoto and T. Goto, Mater. Trans., 44, 1599 (2003). https://doi.org/10.2320/matertrans.44.1599
  9. B. -M. Kim and J. -S. Kim, Korean J. Mater. Res., 28, 620 (2018). https://doi.org/10.3740/MRSK.2018.28.11.620
  10. J. -H. Lee, Y. -K. Lee, Y. -J. Kim and H. -J. Oh, Korean J. Mater. Res., 31, 552 (2021). https://doi.org/10.3740/MRSK.2021.31.10.552
  11. J. Reszczynska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani and A. Zaleska, Appl. Surf. Sci., 307, 333 (2014). https://doi.org/10.1016/j.apsusc.2014.03.199
  12. T. K. Srinivasan, B. S. Panigrahi, N. Suriyamurthy, P. K. Parida and B. Venkatraman, J. Rare Earths, 33, 20 (2015). https://doi.org/10.1016/s1002-0721(14)60377-x
  13. G. Xing, Z. Zhang. S. Qi, G. Zhou, K. Zhang, Z. Cui, Y. Feng, Z. Shan and S. Meng, Opt. Mater., 75, 102 (2018). https://doi.org/10.1016/j.optmat.2017.10.006
  14. U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011). https://doi.org/10.1038/nnano.2011.145
  15. Y. -S. Hong, H. -B. Park and S. -J. Kim, J. Eur. Ceram. Soc., 18, 613 (1998). https://doi.org/10.1016/S0955-2219(97)00169-6
  16. T. -Y. Chen, S. -Y. Chu and Y. -D. Juang, Sensor. Actuator. Phys., 102, 6 (2002). https://doi.org/10.1016/S0924-4247(02)00382-5
  17. S.-Y. Chu, T.-Y. Chen and I.-T. Tsai, Integr. Ferroelectr., 58, 1293 (2003). https://doi.org/10.1080/10584580390259498
  18. R. Yimnirun, R. Tipakontitikul and S. Ananta, Int. J. Mod. Phys. B, 20, 2415 (2006). https://doi.org/10.1142/S0217979206034777
  19. Y. Chen and Y. Chang, Ferroelectrics, 383, 183 (2009). https://doi.org/10.1080/00150190902889440
  20. D. C. Sinclair and A. R. West, J. Mater. Sci., 29, 6061 (1994). https://doi.org/10.1007/BF00354542
  21. D. C. Sinclair and A. R. West, J. Appl. Phys., 66, 3850 (1989). https://doi.org/10.1063/1.344049
  22. I. M. Hodge, M. D. Ingram and A. R. West, J. Electroanal. Chem., 74, 125 (1976). https://doi.org/10.1016/S0022-0728(76)80229-X