DOI QR코드

DOI QR Code

Mechanisms of Weight Control by Primary Cilia

  • Lee, Chan Hee (Department of Biomedical Science, Hallym University) ;
  • Kang, Gil Myoung (Asan Institute for Life Sciences, University of Ulsan College of Medicine) ;
  • Kim, Min-Seon (Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2021.12.19
  • Accepted : 2022.01.25
  • Published : 2022.04.30

Abstract

A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.

Keywords

Acknowledgement

This study was supported by grants from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT of Korea (2017R1A2B3007123, 2019R1F1A1060805, 2019R1I1A1A01058091, 2020R1A2C3004843, 2020R1A4A3078962), and from the Asan Institute for Life Sciences (2019-IP0855-1).

References

  1. Acs, P., Bauer, P.O., Mayer, B., Bera, T., Macallister, R., Mezey, E., and Pastan, I. (2015). A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Struct. Funct. 220, 1511-1528. https://doi.org/10.1007/s00429-014-0741-9
  2. Alvarez-Satta, M., Castro-Sanchez, S., and Valverde, D. (2015). Alstrom syndrome: current perspectives. Appl. Clin. Genet. 8, 171-179.
  3. Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L.B., and Christensen, S.T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199-219. https://doi.org/10.1038/s41581-019-0116-9
  4. Aznar, N. and Billaud, M. (2010). Primary cilia bend LKB1 and mTOR to their will. Dev. Cell 19, 792-794. https://doi.org/10.1016/j.devcel.2010.11.016
  5. Bashford, A.L. and Subramanian, V. (2019). Mice with a conditional deletion of Talpid3 (KIAA0586) - a model for Joubert syndrome. J. Pathol. 248, 396-408. https://doi.org/10.1002/path.5271
  6. Bera, T.K., Liu, X.F., Yamada, M., Gavrilova, O., Mezey, E., Tessarollo, L., Anver, M., Hahn, Y., Lee, B., and Pastan, I. (2008). A model for obesity and gigantism due to disruption of the Ankrd26 gene. Proc. Natl. Acad. Sci. U. S. A. 105, 270-275. https://doi.org/10.1073/pnas.0710978105
  7. Berbari, N.F., Lewis, J.S., Bishop, G.A., Askwith, C.C., and Mykytyn, K. (2008). Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. U. S. A. 105, 4242-4246. https://doi.org/10.1073/pnas.0711027105
  8. Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19, R526-R535. https://doi.org/10.1016/j.cub.2009.05.025
  9. Berbari, N.F., Pasek, R.C., Malarkey, E.B., Yazdi, S.M.Z., McNair, A.D., Lewis, W.R., Nagy, T.R., Kesterson, R.A., and Yoder, B.K. (2013). Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc. Natl. Acad. Sci. U. S. A. 110, 7796-7801. https://doi.org/10.1073/pnas.1210192110
  10. Borman, A.D., Pearce, L.R., Mackay, D.S., Nagel-Wolfrum, K., Davidson, A.E., Henderson, R., Garg, S., Waseem, N.H., Webster, A.R., Plagnol, V., et al. (2014). A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum. Mutat. 35, 289-293. https://doi.org/10.1002/humu.22482
  11. Bromberg, Y., Overton, J., Vaisse, C., Leibel, R.L., and Rost, B. (2009). In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J. 23, 3059-3069. https://doi.org/10.1096/fj.08-127530
  12. Cao, H., Chen, X., Yang, Y., and Storm, D.R. (2016). Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity. Integr. Obes. Diabetes 2, 225-228. https://doi.org/10.15761/IOD.1000149
  13. Collin, G.B., Cyr, E., Bronson, R., Marshall, J.D., Gifford, E.J., Hicks, W., Murray, S.A., Zheng, Q.Y., Smith, R.S., Nishina, P.M., et al. (2005). Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum. Mol. Genet. 14, 2323-2333. https://doi.org/10.1093/hmg/ddi235
  14. Davenport, J.R., Watts, A.J., Roper, V.C., Croyle, M.J., van Groen, T., Wyss, J.M., Nagy, T.R., Kesterson, R.A., and Yoder, B.K. (2007). Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586-1594. https://doi.org/10.1016/j.cub.2007.08.034
  15. Dong, C., Li, W.D., Geller, F., Lei, L., Li, D., Gorlova, O.Y., Hebebrand, J., Amos, C.I., Nicholls, R.D., and Price, R.A. (2005). Possible genomic imprinting of three human obesity-related genetic loci. Am. J. Hum. Genet. 76, 427-437. https://doi.org/10.1086/428438
  16. Forsythe, E. and Beales, P.L. (2013). Bardet-Biedl syndrome. Eur. J. Hum. Genet. 21, 8-13. https://doi.org/10.1038/ejhg.2012.115
  17. Frederich, R.C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B.B., and Flier, J.S. (1995). Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311-1314. https://doi.org/10.1038/nm1295-1311
  18. Grarup, N., Moltke, I., Andersen, M.K., Dalby, M., Vitting-Seerup, K., Kern, T., Mahendran, Y., Jorsboe, E., Larsen, C.V.L., Dahl-Petersen, I.K., et al. (2018). Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172-174. https://doi.org/10.1038/s41588-017-0022-7
  19. Guo, D.F., Cui, H., Zhang, Q., Morgan, D.A., Thedens, D.R., Nishimura, D., Grobe, J.L., Sheffield, V.C., and Rahmouni, K. (2016). The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet. 12, e1005890. https://doi.org/10.1371/journal.pgen.1005890
  20. Guo, D.F., Lin, Z., Wu, Y., Searby, C., Thedens, D.R., Richerson, G.B., Usachev, Y.M., Grobe, J.L., Sheffield, V.C., and Rahmouni, K. (2019). The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes 68, 1591-1603. https://doi.org/10.2337/db18-1088
  21. Guo, J., Otis, J.M., Higginbotham, H., Monckton, C., Cheng, J., Asokan, A., Mykytyn, K., Caspary, T., Stuber, G.D., and Anton, E.S. (2017). Primary cilia signaling shapes the development of interneuronal connectivity. Dev. Cell 42, 286-300.e4. https://doi.org/10.1016/j.devcel.2017.07.010
  22. Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543-546. https://doi.org/10.1126/science.7624777
  23. Han, Y.M., Kang, G.M., Byun, K., Ko, H.W., Kim, J., Shin, M.S., Kim, H.K., Gil, S.Y., Yu, J.H., Lee, B., et al. (2014). Leptin-promoted cilia assembly is critical for normal energy balance. J. Clin. Invest. 124, 2193-2197. https://doi.org/10.1172/JCI69395
  24. He, W., Ikeda, S., Bronson, R.T., Yan, G., Nishina, P.M., North, M.A., and Naggert, J.K. (2000). GFP-tagged expression and immunohistochemical studies to determine the subcellular localization of the tubby gene family members. Brain Res. Mol. Brain Res. 81, 109-117. https://doi.org/10.1016/S0169-328X(00)00164-9
  25. Hearn, T., Spalluto, C., Phillips, V.J., Renforth, G.L., Copin, N., Hanley, N.A., and Wilson, D.I. (2005). Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 54, 1581-1587. https://doi.org/10.2337/diabetes.54.5.1581
  26. Heydet, D., Chen, L.X., Larter, C.Z., Inglis, C., Silverman, M.A., Farrell, G.C., and Leroux, M.R. (2013). A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Dev. Neurobiol. 73, 1-13. https://doi.org/10.1002/dneu.22031
  27. Ishikawa, H. and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
  28. Jacoby, M., Cox, J.J., Gayral, S., Hampshire, D.J., Ayub, M., Blockmans, M., Pernot, E., Kisseleva, M.V., Compere, P., Schiffmann, S.N., et al. (2009). INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027-1031. https://doi.org/10.1038/ng.427
  29. Kang, G.M., Han, Y.M., Ko, H.W., Kim, J., Oh, B.C., Kwon, I., and Kim, M.S. (2015). Leptin elongates hypothalamic neuronal cilia via transcriptional regulation and actin destabilization. J. Biol. Chem. 290, 18146-18155. https://doi.org/10.1074/jbc.M115.639468
  30. Kang, S. (2021). Adipose tissue malfunction drives metabolic dysfunction in Alstrom syndrome. Diabetes 70, 323-325. https://doi.org/10.2337/dbi20-0041
  31. Kopinke, D., Roberson, E.C., and Reiter, J.F. (2017). Ciliary Hedgehog signaling restricts injury-induced adipogenesis. Cell 170, 340-351.e12. https://doi.org/10.1016/j.cell.2017.06.035
  32. Krashes, M.J., Lowell, B.B., and Garfield, A.S. (2016). Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206-219. https://doi.org/10.1038/nn.4202
  33. Kumamoto, N., Gu, Y., Wang, J., Janoschka, S., Takemaru, K., Levine, J., and Ge, S. (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat. Neurosci. 15, 399-405, S1. https://doi.org/10.1038/nn.3042
  34. Kwon, O., Kim, K.W., and Kim, M.S. (2016). Leptin signalling pathways in hypothalamic neurons. Cell. Mol. Life Sci. 73, 1457-1477. https://doi.org/10.1007/s00018-016-2133-1
  35. Lechtreck, K.F. (2015). IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765-778. https://doi.org/10.1016/j.tibs.2015.09.003
  36. Lee, C.H., Song, D.K., Park, C.B., Choi, J., Kang, G.M., Shin, S.H., Kwon, I., Park, S., Kim, S., Kim, J.Y., et al. (2020). Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 11, 5772. https://doi.org/10.1038/s41467-020-19638-4
  37. Liu, P. and Lechtreck, K.F. (2018). The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc. Natl. Acad. Sci. U. S. A. 115, E934-E943.
  38. Loktev, A.V. and Jackson, P.K. (2013). Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329. https://doi.org/10.1016/j.celrep.2013.11.011
  39. Loos, R.J. and Yeo, G.S. (2014). The bigger picture of FTO: the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 10, 51-61. https://doi.org/10.1038/nrendo.2013.227
  40. Lubrano-Berthelier, C., Dubern, B., Lacorte, J.M., Picard, F., Shapiro, A., Zhang, S., Bertrais, S., Hercberg, S., Basdevant, A., Clement, K., et al. (2006). Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab. 91, 1811-1818. https://doi.org/10.1210/jc.2005-1411
  41. Marion, V., Stoetzel, C., Schlicht, D., Messaddeq, N., Koch, M., Flori, E., Danse, J.M., Mandel, J.L., and Dollfus, H. (2009). Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl. Acad. Sci. U. S. A. 106, 1820-1825. https://doi.org/10.1073/pnas.0812518106
  42. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., and Schwartz, M.W. (2006). Central nervous system control of food intake and body weight. Nature 443, 289-295. https://doi.org/10.1038/nature05026
  43. Nies, V.J.M., Struik, D., Wolfs, M.G.M., Rensen, S.S., Szalowska, E., Unmehopa, U.A., Fluiter, K., van der Meer, T.P., Hajmousa, G., Buurman, W.A., et al. (2018). TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int. J. Obes. (Lond.) 42, 376-383. https://doi.org/10.1038/ijo.2017.214
  44. Noben-Trauth, K., Naggert, J.K., North, M.A., and Nishina, P.M. (1996). A candidate gene for the mouse mutation tubby. Nature 380, 534-538. https://doi.org/10.1038/380534a0
  45. Ollmann, M.M., Wilson, B.D., Yang, Y.K., Kerns, J.A., Chen, Y., Gantz, I., and Barsh, G.S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135-138. https://doi.org/10.1126/science.278.5335.135
  46. Pampliega, O., Orhon, I., Patel, B., Sridhar, S., Diaz-Carretero, A., Beau, I., Codogno, P., Satir, B.H., Satir, P., and Cuervo, A.M. (2013). Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200. https://doi.org/10.1038/nature12639
  47. Pitman, J.L., Wheeler, M.C., Lloyd, D.J., Walker, J.R., Glynne, R.J., and Gekakis, N. (2014). A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS One 9, e110226. https://doi.org/10.1371/journal.pone.0110226
  48. Pomeroy, J., Krentz, A.D., Richardson, J.G., Berg, R.L., VanWormer, J.J., and Haws, R.M. (2021). Bardet-Biedl syndrome: Weight patterns and genetics in a rare obesity syndrome. Pediatr. Obes. 16, e12703.
  49. Qiu, L., LeBel, R.P., Storm, D.R., and Chen, X. (2016). Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int. J. Physiol. Pathophysiol. Pharmacol. 8, 95-108.
  50. Qu, D., Ludwig, D.S., Gammeltoft, S., Piper, M., Pelleymounter, M.A., Cullen, M.J., Mathes, W.F., Przypek, R., Kanarek, R., and Maratos-Flier, E. (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243-247. https://doi.org/10.1038/380243a0
  51. Rahmouni, K., Fath, M.A., Seo, S., Thedens, D.R., Berry, C.J., Weiss, R., Nishimura, D.Y., and Sheffield, V.C. (2008). Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J. Clin. Invest. 118, 1458-1467. https://doi.org/10.1172/JCI32357
  52. Roh, E., Song, D.K., and Kim, M.S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 48, e216. https://doi.org/10.1038/emm.2016.4
  53. Rosenbaum, J.L. and Witman, G.B. (2002). Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813-825. https://doi.org/10.1038/nrm952
  54. Saeed, S., Bonnefond, A., Tamanini, F., Mirza, M.U., Manzoor, J., Janjua, Q.M., Din, S.M., Gaitan, J., Milochau, A., Durand, E., et al. (2018). Lossof-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 50, 175-179. https://doi.org/10.1038/s41588-017-0023-6
  55. Sanchez, I. and Dynlacht, B.D. (2016). Cilium assembly and disassembly. Nat. Cell Biol. 18, 711-717. https://doi.org/10.1038/ncb3370
  56. Schou, K.B., Pedersen, L.B., and Christensen, S.T. (2015). Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099-1113. https://doi.org/10.15252/embr.201540530
  57. Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., and Baskin, D.G. (2000). Central nervous system control of food intake. Nature 404, 661-671. https://doi.org/10.1038/35007534
  58. Seo, S., Guo, D.F., Bugge, K., Morgan, D.A., Rahmouni, K., and Sheffield, V.C. (2009). Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323-1331. https://doi.org/10.1093/hmg/ddp031
  59. Shalata, A., Ramirez, M.C., Desnick, R.J., Priedigkeit, N., Buettner, C., Lindtner, C., Mahroum, M., Abdul-Ghani, M., Dong, F., Arar, N., et al. (2013). Morbid obesity resulting from inactivation of the ciliary protein CEP19 in humans and mice. Am. J. Hum. Genet. 93, 1061-1071. https://doi.org/10.1016/j.ajhg.2013.10.025
  60. Shimada, M., Tritos, N.A., Lowell, B.B., Flier, J.S., and Maratos-Flier, E. (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670-674. https://doi.org/10.1038/25341
  61. Siljee, J.E., Wang, Y., Bernard, A.A., Ersoy, B.A., Zhang, S., Marley, A., Von Zastrow, M., Reiter, J.F., and Vaisse, C. (2018). Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180-185. https://doi.org/10.1038/s41588-017-0020-9
  62. Singla, V. and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629-633. https://doi.org/10.1126/science.1124534
  63. Song, D.K., Choi, J.H., and Kim, M.S. (2018). Primary cilia as a signaling platform for control of energy metabolism. Diabetes Metab. J. 42, 117-127. https://doi.org/10.4093/dmj.2018.42.2.117
  64. Stergiakouli, E., Gaillard, R., Tavare, J.M., Balthasar, N., Loos, R.J., Taal, H.R., Evans, D.M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A.G., et al. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity (Silver Spring) 22, 2252-2259. https://doi.org/10.1002/oby.20840
  65. Stratigopoulos, G., Burnett, L.C., Rausch, R., Gill, R., Penn, D.B., Skowronski, A.A., LeDuc, C.A., Lanzano, A.J., Zhang, P., Storm, D.R., et al. (2016). Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J. Clin. Invest. 126, 1897-1910. https://doi.org/10.1172/JCI85526
  66. Stratigopoulos, G., Martin Carli, J.F., O'Day, D.R., Wang, L., Leduc, C.A., Lanzano, P., Chung, W.K., Rosenbaum, M., Egli, D., Doherty, D.A., et al. (2014). Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767-779. https://doi.org/10.1016/j.cmet.2014.04.009
  67. Sun, J.S., Yang, D.J., Kinyua, A.W., Yoon, S.G., Seong, J.K., Kim, J., Moon, S.J., Shin, D.M., Choi, Y.H., and Kim, K.W. (2021). Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis. J. Clin. Invest. 131, e138107. https://doi.org/10.1172/JCI138107
  68. Sun, X., Haley, J., Bulgakov, O.V., Cai, X., McGinnis, J., and Li, T. (2012). Tubby is required for trafficking G protein-coupled receptors to neuronal cilia. Cilia 1, 21. https://doi.org/10.1186/2046-2530-1-21
  69. Tong, T., Shen, Y., Lee, H.W., Yu, R., and Park, T. (2016). Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 34179. https://doi.org/10.1038/srep34179
  70. van Vliet-Ostaptchouk, J.V., Onland-Moret, N.C., Shiri-Sverdlov, R., van Gorp, P.J., Custers, A., Peeters, P.H., Wijmenga, C., Hofker, M.H., and van der Schouw, Y.T. (2008). Polymorphisms of the TUB gene are associated with body composition and eating behavior in middle-aged women. PLoS One 3, e1405. https://doi.org/10.1371/journal.pone.0001405
  71. Wang, Y., Bernard, A., Comblain, F., Yue, X., Paillart, C., Zhang, S., Reiter, J.F., and Vaisse, C. (2021). Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight. J. Clin. Invest. 131, e142064. https://doi.org/10.1172/JCI142064
  72. Wang, Z., Li, V., Chan, G.C., Phan, T., Nudelman, A.S., Xia, Z., and Storm, D.R. (2009). Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One 4, e6979. https://doi.org/10.1371/journal.pone.0006979
  73. Wang, Z., Phan, T., and Storm, D.R. (2011). The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J. Neurosci. 31, 5557-5561. https://doi.org/10.1523/JNEUROSCI.6561-10.2011
  74. Yan, H., Chen, C., Chen, H., Hong, H., Huang, Y., Ling, K., Hu, J., and Wei, Q. (2020). TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat. Commun. 11, 2196. https://doi.org/10.1038/s41467-020-16042-w
  75. Zhu, D., Shi, S., Wang, H., and Liao, K. (2009). Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 122, 2760-2768. https://doi.org/10.1242/jcs.046276