DOI QR코드

DOI QR Code

Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells

  • 투고 : 2021.08.03
  • 심사 : 2021.12.07
  • 발행 : 2022.04.30

초록

The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (NRF-2019R1A5A2027340, 2021R1F1A1049941, and 2019R1A2C2084716 to E.J.C. and 2012R1A3A2048767 to H.D.Y.).

참고문헌

  1. Agarwal, S.K., Guru, S.C., Heppner, C., Erdos, M.R., Collins, R.M., Park, S.Y., Saggar, S., Chandrasekharappa, S.C., Collins, F.S., Spiegel, A.M., et al. (1999). Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96, 143-152. https://doi.org/10.1016/S0092-8674(00)80967-8
  2. Alimirah, F., Chen, J.M., Basrawala, Z., Xin, H., and Choubey, D. (2006). DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett. 580, 2294-2300. https://doi.org/10.1016/j.febslet.2006.03.041
  3. Balogh, K., Racz, K., Patocs, A., and Hunyady, L. (2006). Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol. Metab. 17, 357-364. https://doi.org/10.1016/j.tem.2006.09.004
  4. Beltran, H., Tomlins, S., Aparicio, A., Arora, V., Rickman, D., Ayala, G., Huang, J.T., True, L., Gleave, M.E., Soule, H., et al. (2014). Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846-2850. https://doi.org/10.1158/1078-0432.CCR-13-3309
  5. Chandrasekharappa, S.C., Guru, S.C., Manickam, P., Olufemi, S.E., Collins, F.S., EmmertBuck, M.R., Debelenko, L.V., Zhuang, Z.P., Lubensky, I.A., Liotta, L.A., et al. (1997). Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404-407. https://doi.org/10.1126/science.276.5311.404
  6. Chou, C.W., Tan, X., Hung, C.N., Lieberman, B., Chen, M.Z., Kusi, M., Mitsuya, K., Lin, C.L., Morita, M., Liu, Z.J., et al. (2020). Menin and meninassociated proteins coregulate cancer energy metabolism. Cancers (Basel) 12, 2715. https://doi.org/10.3390/cancers12092715
  7. Chu, K., Cheng, C.J., Ye, X.C., Lee, Y.C., Zurita, A.J., Chen, D.T., Yu-Lee, L.Y., Zhang, S., Yeh, E.T., Hu, M.C.T., et al. (2008). Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res. 6, 1259-1267. https://doi.org/10.1158/1541-7786.MCR-08-0077
  8. Cierpicki, T. and Grembecka, J. (2014). Challenges and opportunities in targeting the menin- MLL interaction. Future Med. Chem. 6, 447-462. https://doi.org/10.4155/fmc.13.214
  9. Dreijerink, K.M.A., Groner, A.C., Vos, E.S.M., Font-Tello, A., Gu, L., Chi, D., Reyes, J., Cook, J., Lim, E., Lin, C.Y., et al. (2017a). Enhancer-mediated oncogenic function of the Menin tumor suppressor in breast cancer. Cell Rep. 18, 2359-2372. https://doi.org/10.1016/j.celrep.2017.02.025
  10. Dreijerink, K.M.A., Mulder, K.W., Winkler, G.S., Hoppener, J.W.M., Lips, C.J.M., and Timmers, H.T.M. (2006). Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res. 66, 4929-4935. https://doi.org/10.1158/0008-5472.CAN-05-4461
  11. Dreijerink, K.M.A., Timmers, H.T.M., and Brown, M. (2017b). Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr. Relat. Cancer 24, T135-T145.
  12. Epstein, J.I., Amin, M.B., Beltran, H., Lotan, T.L., Mosquera, J.M., Reuter, V.E., Robinson, B.D., Troncoso, P., and Rubin, M.A. (2014). Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756-767. https://doi.org/10.1097/PAS.0000000000000208
  13. Feldman, B.J. and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34-45. https://doi.org/10.1038/35094009
  14. Feng, Z.J., Ma, J., and Hua, X.X. (2017a). Epigenetic regulation by the menin pathway. Endocr. Relat. Cancer 24, T147-T159. https://doi.org/10.1530/ERC-16-0568
  15. Feng, Z.J., Wang, L., Sun, Y.M., Jiang, Z.Z., Domsic, J., An, C.Y., Xing, B.W., Tian, J.J., Liu, X.H., Metz, D.C., et al. (2017b). Menin and Daxx interact to suppress neuroendocrine tumors through epigenetic control of the membrane metallo-endopeptidase. Cancer Res. 77, 401-411. https://doi.org/10.1158/0008-5472.CAN-16-1567
  16. Fujita, H., Okada, F., Hamada, J., Hosokawa, M., Moriuchi, T., Koya, R.C., and Kuzumaki, N. (2001). Gelsolin functions as a metasatsis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int. J. Cancer 93, 773-780. https://doi.org/10.1002/ijc.1413
  17. Gang, D., Hongwei, H., Hedai, L., Ming, Z., Qian, H., and Zhijun, L. (2013). The tumor suppressor protein menin inhibits NF-kappa B-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma. Mol. Biol. Rep. 40, 2461-2466. https://doi.org/10.1007/s11033-012-2326-0
  18. Gherardi, S., Ripoche, D., Mikaelian, I., Chanal, M., Teinturier, R., Goehrig, D., Cordier-Bussat, M., Zhang, C.X., Hennino, A., and Bertolino, P. (2017). Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 427-437. https://doi.org/10.1016/j.bbagrm.2017.02.003
  19. Grembecka, J., He, S.H., Shi, A.B., Purohit, T., Muntean, A.G., Sorenson, R.J., Showalter, H.D., Murai, M.J., Belcher, A.M., Hartley, T., et al. (2012). Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277-284. https://doi.org/10.1038/nchembio.773
  20. Gururajan, M., Cavassani, K.A., Sievert, M., Duan, P., Lichterman, J., Huang, J.M., Smith, B., You, S.Y., Nandana, S., Chu, G.C.Y., et al. (2015). SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget 6, 44072-44083. https://doi.org/10.18632/oncotarget.6398
  21. Huang, J., Gurung, B., Wan, B.B., Matkar, S., Veniaminova, N.A., Wan, K., Merchant, J.L., Hua, X.X., and Lei, M. (2012). The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482, 542-546. https://doi.org/10.1038/nature10806
  22. Huang, S., Chi, Y.Y., Qin, Y., Wang, Z.L., Xiu, B.Q., Su, Y.H., Guo, R., Guo, L., Sun, H.F., Zeng, C.J., et al. (2018). CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription. Theranostics 8, 2549-2564. https://doi.org/10.7150/thno.22523
  23. Hughes, C.M., Rozenblatt-Rosen, O., Milne, T.A., Copeland, T.D., Levine, S.S., Lee, J.C., Hayes, D.N., Shanmugam, K.S., Bhattacharjee, A., Biondi, C.A., et al. (2004). Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. Mol. Cell 13, 587-597. https://doi.org/10.1016/S1097-2765(04)00081-4
  24. Imachi, H., Murao, K., Dobashi, H., Bhuyan, M.M., Cao, X.Y., Kontani, K., Niki, S., Murazawa, C., Nakajima, H., Kohno, N., et al. (2010). Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res. Treat. 122, 395-407. https://doi.org/10.1007/s10549-009-0581-0
  25. Kempinska, K., Malik, B., Borkin, D., Klossowski, S., Shukla, S., Miao, H.Z., Wang, J.Y., Cierpicki, T., and Grembecka, J. (2018). Pharmacologic inhibition of the menin-MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. Mol. Cancer Ther. 17, 26-38. https://doi.org/10.1158/1535-7163.MCT-17-0580
  26. Kim, H., Lee, J.E., Cho, E.J., Liu, J.O., and Youn, H.D. (2003). Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res. 63, 6135-6139.
  27. Ko, C.J., Huang, C.C., Lin, H.Y., Juan, C.P., Lan, S.W., Shyu, H.Y., Wu, S.R., Hsiao, P.W., Huang, H.P., Shun, C.T., et al. (2015). Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis. Cancer Res. 75, 2949-2960. https://doi.org/10.1158/0008-5472.CAN-14-3297
  28. Kudithipudi, S., Schuhmacher, M.K., Kebede, A.F., and Jeltsch, A. (2017). The SUV39H1 protein lysine methyltransferase methylates chromatin proteins involved in heterochromatin formation and VDJ recombination. ACS Chem. Biol. 12, 958-968. https://doi.org/10.1021/acschembio.6b01076
  29. Lachner, M., O'Carroll, N., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120. https://doi.org/10.1038/35065132
  30. Liang, K.W., Volk, A.G., Haug, J.S., Marshall, S.A., Woodfin, A.R., Bartom, E.T., Gilmore, J.M., Florens, L., Washburn, M.P., Sullivan, K.D., et al. (2017). Therapeutic targeting of MLL degradation pathways in MLL-rearranged leukemia. Cell 168, 59-72.e13. https://doi.org/10.1016/j.cell.2016.12.011
  31. Lin, C.Y., Jan, Y.J., Kuo, L.K., Wang, B.J., Huo, C., Jiang, S.S., Chen, S.C., Kuo, Y.Y., Chang, C.R., and Chuu, C.P. (2018). Elevation of androgen receptor promotes prostate cancer metastasis by induction of epithelial-mesenchymal transition and reduction of KAT5. Cancer Sci. 109, 3564-3574. https://doi.org/10.1111/cas.13776
  32. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  33. Malik, R., Khan, A.P., Asangani, I.A., Cieslik, M., Prensner, J.R., Wang, X.J., Iyer, M.K., Jiang, X., Borkin, D., Escara-Wilke, J., et al. (2015). Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344-352. https://doi.org/10.1038/nm.3830
  34. Matkar, S., Thiel, A., and Hua, X.X. (2013). Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem. Sci. 38, 394-402. https://doi.org/10.1016/j.tibs.2013.05.005
  35. Matoso, A., Zhou, Z.X., Hayama, R., Flesken-Nikitin, A., and Nikitin, A.Y. (2008). Cell lineage-specific interactions between Men1 and Rb in neuroendocrine neoplasia. Carcinogenesis 29, 620-628. https://doi.org/10.1093/carcin/bgm207
  36. Milne, T.A., Hughes, C.M., Lloyd, R., Yang, Z.H., Rozenblatt-Rosen, O., Dou, Y.L., Schnepp, R.W., Krankel, C., LiVolsi, V.A., Gibbs, D., et al. (2005). Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl. Acad. Sci. U. S. A. 102, 749-754. https://doi.org/10.1073/pnas.0408836102
  37. Mishra, A., Ayasolla, K., Kumar, V., Lan, X.Q., Vashistha, H., Aslam, R., Hussain, A., Chowdhary, S., Shoshtari, S.M., Paliwal, N., et al. (2018). Modulation of apolipoprotein L1-microRNA-193a axis prevents podocyte dedifferentiation in high-glucose milieu. Am. J. Physiol. Renal Physiol. 314, F832-F843. https://doi.org/10.1152/ajprenal.00541.2017
  38. Mohler, J.L., Antonarakis, E.S., Armstrong, A.J., D'Amico, A.V., Davis, B.J., Dorff, T., Eastham, J.A., Enke, C.A., Farrington, T.A., Higano, C.S., et al. (2019). Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 17, 479-505. https://doi.org/10.6004/jnccn.2019.0023
  39. Mullany, S.A., Moslemi-Kebria, M., Rattan, R., Khurana, A., Clayton, A., Ota, T., Mariani, A., Podratz, K.C., Chien, J., and Shridhar, V. (2011). Expression and functional significance of HtrA1 loss in endometrial cancer. Clin. Cancer Res. 17, 427-436. https://doi.org/10.1158/1078-0432.CCR-09-3069
  40. Rao, R.C. and Dou, Y.L. (2015). Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334-346. https://doi.org/10.1038/nrc3929
  41. Reis, S.T., Antunes, A.A., Pontes, J., de Sousa-Canavez, J.M., Dall'Oglio, M.F., Piantino, C.B., da Cruz, J.A.S., Morais, D.R., Srougi, M., and Leite, K.R.M. (2012). Underexpression of MMP-2 and its regulators, TIMP2, MT1-MMP and IL-8, is associated with prostate cancer. Int. Braz. J. Urol. 38, 167-174. https://doi.org/10.1590/S1677-55382012000200004
  42. Ross, J.S., Kaur, P., Sheehan, C.E., Fisher, H.A.G., Kaufman, R.A., and Kallakury, B.V.S. (2003). Prognostic significance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer. Mod. Pathol. 16, 198-205. https://doi.org/10.1097/01.MP.0000056984.62360.6C
  43. Shin, M.H., He, Y.L., Marrogi, E., Piperdi, S., Ren, L., Khanna, C., Gorlick, R., Liu, C.Y., and Huang, J. (2016). A RUNX2-mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet. 12, e1005884. https://doi.org/10.1371/journal.pgen.1005884
  44. Shin, Y.J. and Kim, J.H. (2012). The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One 7, e30393. https://doi.org/10.1371/journal.pone.0030393
  45. Slany, R.K. (2009). The molecular biology of mixed lineage leukemia. Haematologica 94, 984-993. https://doi.org/10.3324/haematol.2008.002436
  46. Thiel, A.T., Blessington, P., Zou, T., Feather, D., Wu, X.J., Yan, J.Z., Zhang, H., Liu, Z.G., Ernst, P., Koretzky, G.A., et al. (2010). MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148-159. https://doi.org/10.1016/j.ccr.2009.12.034
  47. Thiel, A.T., Feng, Z.J., Pant, D.K., Chodosh, L.A., and Hua, X.X. (2013). The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBP alpha and differentiation in MLL-AF9 leukemia. Haematologica 98, 918-927. https://doi.org/10.3324/haematol.2012.074195
  48. Weber, F. and Mulligan, L.M. (2017). Happy 20th anniversary MEN1: from positional cloning to gene function restoration. Endocr. Relat. Cancer 24, E7-E11.
  49. Wu, G.W., Yuan, M.Q., Shen, S.Q., Ma, X.Y., Fang, J.W., Zhu, L.B., Sun, L.C., Liu, Z.J., He, X.P., Huang, D., et al. (2017). Menin enhances c-Myc-mediated transcription to promote cancer progression. Nat. Commun. 8, 15278. https://doi.org/10.1038/ncomms15278
  50. Wu, Y., Doepner, M., Hojnacki, T., Feng, Z.J., Katona, B.W., He, X., Ma, J., Cao, Y., Busino, L., Zhou, F.X., et al. (2019). Disruption of the menin-MLL interaction triggers menin protein degradation via ubiquitin-proteasome pathway. Am. J. Cancer Res. 9, 1682-1694.
  51. Xiang, Y.Z., Qiu, Q.C., Jiang, M., Jin, R.J., Lehmann, B.D., Strand, D.W., Jovanovic, B., DeGraff, D.J., Zheng, Y., Yousif, D.A., et al. (2013). SPARCL1 suppresses metastasis in prostate cancer. Mol. Oncol. 7, 1019-1030. https://doi.org/10.1016/j.molonc.2013.07.008
  52. Xu, B., Li, S.H., Zheng, R., Gao, S.B., Ding, L.H., Yin, Z.Y., Lin, X., Feng, Z.J., Zhang, S., Wang, X.M., et al. (2013). Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc. Natl. Acad. Sci. U. S. A. 110, 17480-17485. https://doi.org/10.1073/pnas.1312022110
  53. Xu, Y., Yue, L.Y., Wang, Y.L., Xing, J., Chen, Z.F., Shi, Z., Liu, R.F., Liu, Y.C., Luo, X.M., Jiang, H.L., et al. (2016). Discovery of novel inhibitors targeting the menin-mixed lineage leukemia interface using pharmacophore- and docking-based virtual screening. J. Chem. Inf. Model. 56, 1847-1855. https://doi.org/10.1021/acs.jcim.6b00185
  54. Yang, Y.J., Song, T.Y., Park, J., Lee, J., Lim, J., Jang, H., Kim, Y.N., Yang, J.H., Song, Y., Choi, A., et al. (2013). Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 4, e583. https://doi.org/10.1038/cddis.2013.98
  55. Yi, X.Q., Guo, J.F., Guo, J., Sun, S., Yang, P., Wang, J.J., Li, Y., Xie, L.S., Cai, J., and Wang, Z.H. (2017). EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci. Rep. 7, 3568. https://doi.org/10.1038/s41598-017-03362-z
  56. Yokoyama, A., Somervaille, T.C.P., Smith, K.S., Rozenblatt-Rosen, O., Meyerson, M., and Cleary, M.L. (2005). The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207-218. https://doi.org/10.1016/j.cell.2005.09.025
  57. Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W., and Cleary, M.L. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639-5649. https://doi.org/10.1128/MCB.24.13.5639-5649.2004
  58. Zhang, H., Pan, Y.Z., Cheung, M., Cao, M., Yu, C., Chen, L., Zhan, L., He, Z.W., and Sun, C.Y. (2019). LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis. 10, 230. https://doi.org/10.1038/s41419-019-1320-z