과제정보
이 논문은 2021학년도 평택대학교 학술연구비의 지원에 의하여 연구되었음.
참고문헌
- N. Zhang, C. Zhang, and D. Wu, "Construction of a smart management system for physical health based on IoT and cloud computing with big data," Computer Communications, Vol.179, pp.183-194, 2021. https://doi.org/10.1016/j.comcom.2021.08.018
- W. Fang, F. Xue, Y. Ding, N. Xiong, and V. C. M. Leung, "EdgeKE: An on-demand deep learning IoT system for cognitive big data on industrial edge devices," IEEE Transactions on Industrial Informatics, Vol.17, No.9, pp.6144-6152, 2021. https://doi.org/10.1109/TII.2020.3044930
- G. Aceto, V. Persico, and A. Pescape, "Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0," Journal of Industrial Information Integration, Vol.18, pp.100129, 2020. https://doi.org/10.1016/j.jii.2020.100129
- R. Zhu, S. Li, P. Wang, Y. Tan, and J. Yuan, "Gradual migration of co-existing fixed/flexible optical networks for cloud-fog computing," IEEE Access, Vol.8, pp.50637-50647, 2020. https://doi.org/10.1109/ACCESS.2020.2979895
- J. Feng, L. T. Yang, R. Zhang, W. Qiang, and J. Chen, "Privacy preserving high-order bi-lanczos in cloud-fog computing for industrial applications," IEEE Transactions on Industrial Informatics, pp.1-1, 2020.
- A. Najafizadeh, A. Salajegheh, A. M. Rahmani, and A. Sahafi, "Multi-objective task scheduling in cloud-fog computing using goal programming approach," Cluster Computing, Vol.25, No.1, pp.141-165, 2021.
- M. Haghi Kashani, A. M. Rahmani, and N. Jafari Navimipour, "Quality of service-aware approaches in fog computing," International Journal of Communication Systems, Vol.33, No.8, pp.e4340, 2020. https://doi.org/10.1002/dac.4340
- F. Murtaza, A. Akhunzada, S. U. Islam, J. Boudjadar, and R. Buyya, "QoS-aware service provisioning in fog computing," Journal of Network and Computer Applications, Vol.165, pp.102674, 2020. https://doi.org/10.1016/j.jnca.2020.102674
- J. C. Guevara and N. L. S. da Fonseca, "Task scheduling in cloud-fog computing systems," Peer-to-Peer Networking and Applications, Vol.14, No.2, pp.962-977, 2021. https://doi.org/10.1007/s12083-020-01051-9
- S. K. Mani and I. Meenakshisundaram, "Improving quality-of-service in fog computing through efficient resource allocation," Computational Intelligence, Vol.36, No.4, pp.1527-1547, 2020. https://doi.org/10.1111/coin.12285
- D. Goncalves, C. Puliafito, E. Mingozzi, O. Rana, L. Bittencourt, and E. Madeira, "Dynamic network slicing in fog computing for mobile users in MobFogSim," In Proceedings of the 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7-10 pp.237-246, Dec. 2020.
- R. M. Abdelmoneem, A. Benslimane, and E. Shaaban, "Mobility-aware task scheduling in cloud-Fog IoT-based healthcare architectures," Computer Networks, Vol.179, pp.107348, 2020. https://doi.org/10.1016/j.comnet.2020.107348
- J. P. Martin, A. Kandasamy, and K. Chandrasekaran, "Mobility aware autonomic approach for the migration of application modules in fog computing environment," Journal of Ambient Intelligence and Humanized Computing, Vol.11, No.11, pp.5259-5278, 2020. https://doi.org/10.1007/s12652-020-01854-x
- C. Lin, G. Han, X. Qi, M. Guizani, and L. Shu, "A distributed mobile fog computing scheme for mobile delay-sensitive applications in SDN-Enabled vehicular networks," IEEE Transactions on Vehicular Technology, Vol.69, No.5, pp.5481-5493, 2020. https://doi.org/10.1109/TVT.2020.2980934
- V. Porkodi et al., "Resource provisioning for cyber-physical-social system in cloud-fog-edge computing using optimal flower pollination algorithm," IEEE Access, Vol.8, pp.105311-105319, 2020. https://doi.org/10.1109/ACCESS.2020.2999734
- M. S. Aslanpour, S. S. Gill, and A. N. Toosi, "Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research," Internet of Things, Vol.12, pp.100273, 2020. https://doi.org/10.1016/j.iot.2020.100273
- Y. Kalyani and R. Collier, "A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture," Sensors, Vol.21, No.17, pp.5922, 2021. https://doi.org/10.3390/s21175922
- A. Oliveira and T. Vazao, "Generating synthetic datasets for mobile wireless networks with SUMO," in Proceedings of the 19th ACM International Symposium on Mobility Management and Wireless Access, Alicante, Spain, pp.33-42, 2021.
- J. J. Gonzalez-Delicado, J. Gozalvez, J. Mena-Oreja, M. Sepulcre, and B. Coll-Perales, "Alicante-murcia freeway scenario: A high-accuracy and large-scale traffic simulation scenario generated using a novel traffic demand calibration method in SUMO," IEEE Access, Vol.9, pp.154423-154434, 2021. https://doi.org/10.1109/ACCESS.2021.3126269