DOI QR코드

DOI QR Code

Prediction of Vibration Characteristics of a Composite Rotor Blade via Deep Neural Networks

심층신경망을 이용한 복합재 로터 블레이드의 진동특성 예측

  • Yoo, Seungho (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Jeong, Inho (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Kim, Hyejin (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Cho, Haeseong (Future Air Mobility Research Center, Jeonbuk National University) ;
  • Kim, Taejoo (Korea Aerospace Research Institute) ;
  • Kee, Youngjung (Korea Aerospace Research Institute)
  • Received : 2022.02.19
  • Accepted : 2022.04.04
  • Published : 2022.05.01

Abstract

In this paper, a deep neural network(DNN) model for predicting the vibration characteristics of the composite rotor blade with c-spar cross section was developed. Herein, the present DNN model is defined by using the natural frequencies obtained through the in-house code based on the nonlinear co-rotational(CR) shell element. For the present DNN model, the accuracy of the model was evaluated via the data with a random distribution of thickness and a tendency to decrease in thickness along the blade span.

본 논문에서는 c-스파 단면을 갖는 복합재 로터 블레이드에 대해 co-rotational(CR) 이론 기반 비선형 쉘 요소를 사용하는 In-house code를 통해 고유진동수를 구하고, 이를 이용하여 블레이드의 진동특성을 예측하는 심층신경망 모델을 개발하였다. 심층신경망 모델은 무작위 두께 분포를 갖는 데이터와 스팬 방향으로 두께 감소 경향성을 보이는 데이터를 통해 심층신경망 모델의 정확성을 평가하였다.

Keywords

Acknowledgement

본 연구는 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2020R1C1C1006006)과 한국전력공사의 2021년 착수 기초연구 개발 과제연구비의 지원(No. R21XO01-6)을 받아 수행된 연구입니다.

References

  1. Hodges, D. H., "A review of composite rotor blade modeling," 29th Structures, Structural Dynamics and Materials Conference, April 1988, pp. 355~312
  2. Chellil, A., Settet, A. T. and Lecheb, S., "Aeroelastic stability analysis of composite rotor blade," 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013, pp. 1~4.
  3. Chun, T. Y., Ryu, H. Y., Cho, H., Shin, S. J., Kee, Y. J. and Kim, D. K., "Structural Analysis of a Bearingless Rotor using an Improved Flexible Multi-body Model," Journal of Aircraft, Vol. 50, No. 2, 2013, pp. 539~550. https://doi.org/10.2514/1.C031920
  4. Datta, A., "X3D - A 3D Solid Finite Element Multibody Dynamic Analysis for Rotorcraft," American Helicopter Society Technical Meeting on Aeromechanics Design for Vertical Lift, 2016, pp. 20~22.
  5. Liao, C. C., Zhao, X. L. and, Xu, J. Z., "Blade layers optimization of wind turbines using FAST and improved PSO Algorithm," Renewable Energy, Vol. 42, 2012, pp. 227~233. https://doi.org/10.1016/j.renene.2011.08.011
  6. Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E. and Sobh, N. A., "Deep learning for topology optimization of 2D metamaterials," Materials & Design, Vol. 196, 2020, pp. 109098. https://doi.org/10.1016/j.matdes.2020.109098
  7. Yu, Y., Hur, T., Jung, J. and Jang, I. G., "Deep learning for determining ad near-optimal topological design without any iteration," Structural and Multidisciplinary Optimization, Vol. 59, 2019, pp. 787~799. https://doi.org/10.1007/s00158-018-2101-5
  8. Cho, H., Gong, D. H., Lee, N., Shin, S. J. and Lee, S., "Combined co-rotational beam/shell elements for fluid-structure interaction of insect-like flapping wing," Nonlinear Dynamics, Vol. 97, No. 1, 2019, pp. 203~224. https://doi.org/10.1007/s11071-019-04966-y
  9. Felippa, C. A. and Haugen, B., "A unified formulation of small-strain corotational finite elements: I. Theory," Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 21-24, 2005, pp. 2285~2335. https://doi.org/10.1016/j.cma.2004.07.035
  10. Cho, H., Lee, N., Shin, S. J. and Lee, S., "Computational Study of Fluid-Structure Interaction on Flapping Wing under Passive Pitching Motion," Journal of Aerospace Engineering, Vol. 32, No. 4, 2019, pp. 04019023. https://doi.org/10.1061/(asce)as.1943-5525.0001011
  11. Khosravi, P., Ganesa, R. and Sedaghati, R., "Corotational non-linear analysis of thin plate and shell using a new shell element," International Journal for Numerical Methods in Engineering, Vol. 69, No. 4, 2007, pp. 859~885. https://doi.org/10.1002/nme.1791
  12. Kim, H., Kim, S., Hong, J. and Cho, H., "Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 8, 2020, pp. 565~571. https://doi.org/10.5139/JKSAS.2020.48.8.565
  13. Clevert, D. A., Unterthiner, T. and Hochreiter, S., "Fast and accurate deep network learning by exponential linear units (elus)," arXiv preprint arXiv: 1511.07289, 2016.
  14. Owen, A. B., "Controlling Correlations in Latin Hypercube Samples," Journal of the American Statistical Association, Vol. 89, No. 428, 1994, pp. 1517~1522. https://doi.org/10.1080/01621459.1994.10476891
  15. Schubel, P. J. and Crossley, R. J., "Wind Turbine Blade Design," Energies, Vol. 5, No. 9, 2012, pp. 3425~3449. https://doi.org/10.3390/en5093425