Acknowledgement
본 연구는 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2020R1C1C1006006)과 한국전력공사의 2021년 착수 기초연구 개발 과제연구비의 지원(No. R21XO01-6)을 받아 수행된 연구입니다.
References
- Hodges, D. H., "A review of composite rotor blade modeling," 29th Structures, Structural Dynamics and Materials Conference, April 1988, pp. 355~312
- Chellil, A., Settet, A. T. and Lecheb, S., "Aeroelastic stability analysis of composite rotor blade," 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013, pp. 1~4.
- Chun, T. Y., Ryu, H. Y., Cho, H., Shin, S. J., Kee, Y. J. and Kim, D. K., "Structural Analysis of a Bearingless Rotor using an Improved Flexible Multi-body Model," Journal of Aircraft, Vol. 50, No. 2, 2013, pp. 539~550. https://doi.org/10.2514/1.C031920
- Datta, A., "X3D - A 3D Solid Finite Element Multibody Dynamic Analysis for Rotorcraft," American Helicopter Society Technical Meeting on Aeromechanics Design for Vertical Lift, 2016, pp. 20~22.
- Liao, C. C., Zhao, X. L. and, Xu, J. Z., "Blade layers optimization of wind turbines using FAST and improved PSO Algorithm," Renewable Energy, Vol. 42, 2012, pp. 227~233. https://doi.org/10.1016/j.renene.2011.08.011
- Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E. and Sobh, N. A., "Deep learning for topology optimization of 2D metamaterials," Materials & Design, Vol. 196, 2020, pp. 109098. https://doi.org/10.1016/j.matdes.2020.109098
- Yu, Y., Hur, T., Jung, J. and Jang, I. G., "Deep learning for determining ad near-optimal topological design without any iteration," Structural and Multidisciplinary Optimization, Vol. 59, 2019, pp. 787~799. https://doi.org/10.1007/s00158-018-2101-5
- Cho, H., Gong, D. H., Lee, N., Shin, S. J. and Lee, S., "Combined co-rotational beam/shell elements for fluid-structure interaction of insect-like flapping wing," Nonlinear Dynamics, Vol. 97, No. 1, 2019, pp. 203~224. https://doi.org/10.1007/s11071-019-04966-y
- Felippa, C. A. and Haugen, B., "A unified formulation of small-strain corotational finite elements: I. Theory," Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 21-24, 2005, pp. 2285~2335. https://doi.org/10.1016/j.cma.2004.07.035
- Cho, H., Lee, N., Shin, S. J. and Lee, S., "Computational Study of Fluid-Structure Interaction on Flapping Wing under Passive Pitching Motion," Journal of Aerospace Engineering, Vol. 32, No. 4, 2019, pp. 04019023. https://doi.org/10.1061/(asce)as.1943-5525.0001011
- Khosravi, P., Ganesa, R. and Sedaghati, R., "Corotational non-linear analysis of thin plate and shell using a new shell element," International Journal for Numerical Methods in Engineering, Vol. 69, No. 4, 2007, pp. 859~885. https://doi.org/10.1002/nme.1791
- Kim, H., Kim, S., Hong, J. and Cho, H., "Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 8, 2020, pp. 565~571. https://doi.org/10.5139/JKSAS.2020.48.8.565
- Clevert, D. A., Unterthiner, T. and Hochreiter, S., "Fast and accurate deep network learning by exponential linear units (elus)," arXiv preprint arXiv: 1511.07289, 2016.
- Owen, A. B., "Controlling Correlations in Latin Hypercube Samples," Journal of the American Statistical Association, Vol. 89, No. 428, 1994, pp. 1517~1522. https://doi.org/10.1080/01621459.1994.10476891
- Schubel, P. J. and Crossley, R. J., "Wind Turbine Blade Design," Energies, Vol. 5, No. 9, 2012, pp. 3425~3449. https://doi.org/10.3390/en5093425