DOI QR코드

DOI QR Code

Isolation, Characterization, and Control of Pseudomonas kribbensis and Pantoea vagans that cause Soft-rot Disease Isolated from Chinese Cabbages

  • Received : 2021.12.09
  • Accepted : 2022.04.13
  • Published : 2022.04.30

Abstract

The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.

세균성 무름병은 배추와 같은 채소의 주요 질병중의 하나이며, 특히 김치의 주원료인 배추의 저장에 있어서 발생할 경우, 품질 저하로 인한 경제적 손실을 유발한다. 우리는 무름병이 발생한 배추로부터 원인이 되는 세균들을 분리하였고, 해당 세균이 신선한 배추 조직에 인위적으로 접종하였을 경우, 무름병이 발생하는 것을 확인하였다. 해당 원인균 2종을 동정한 결과, Pseudomonas kribbensis와 Pantoea vagans로 확인되었다. 이러한 원인 세균을 제어하기 위하여 차아염소산수 처리와 항균활성 유산균의 배양 상등액을 이용하여 제어하는 테스트를 진행하였다. 본 테스트에 사용한 항균활성 유산균은 리스테리아와 같은 병원성 미생물과 Pseudomonas 속 계열을 저해하는 Lactobacillus plantarum PL203 유산균을 선별하여 사용하였다. 제어 테스트는 정상 배추 조직에 무름병 원인균 2종을 각각 105 cfu/g 이 되도록 접종한 후, 차아염소산수를 농도별로 분무하거나 항균활성 유산균 배양상등액을 0.5 mL 분무한 후, 25℃에서 5일간 배양한 결과, 차아염소산수 120 ppm 이상 첨가한 구간과 항균활성 유산균 배양 상등액을 처리한 구간에서 대조구와 비교하여 배추 무름 원인세균을 완전하게 제어하는 것을 확인하였다.

Keywords

Acknowledgement

This research was supported by 2020 Collaborative R&BD Program of The Food Industry Promotional Agency of Korea.

References

  1. Li, J., Chai, Z., Yang, H., Li, G., Wang, D., First report of Pseudomonas marginalis pv. maginalis as a cause of soft rot of potato in China. Australas. Plant Pathol., 2, 71-73 (2007).
  2. Zhang, J., Lin, B., Shen, H., Pu, X., Chen, Z., Feng, J., First report of bacterial soft rot of potato caused by Pectobacterium carotovorum subsp. carotovorum in Guangdong province of China. Plant Dis., 96, 1819-1819 (2012).
  3. Des Essarts, Y.R., Cigna, J., -Laurent, A.Q., Caron, A., Munier, E., -Cirou, A.B., Helias, V., Faure, D., Biocontrol of the potato Blackleg and soft rot diseases caused by Dickeya dianthicola. Appl. Environ. Microbiol., 82, 268-278 (2016). https://doi.org/10.1128/AEM.02525-15
  4. Wang, L., Li, X.-B., Suo, H.-C., An, K., Lu, H.-M., Liu, X.-J., Soft rot of potatoes caused by Bacillus amyloliquefaciens in Guangdong Province, China. Can. J. Plant Pathol., 39, 533-539 (2017). https://doi.org/10.1080/07060661.2017.1381994
  5. Kwon, Y.H., Yoo, A.Y., Yoo, J.E., Kang, H.Y., Isolation and characterization of plant pathogen that cause soft rot disease in Napa cabbage. Kor. J. Life Sci., 19, 1177-1182 (2009). https://doi.org/10.5352/JLS.2009.19.8.1177
  6. Bhat, K.A., Masood, S.D., Bhat, N.A., Bhat, M.A., Razvi, S.M., Mir, M.R., Akhtar, S., Wani, N., Habib, M., Current status of post harvest soft rot in vegetables: A Review. Asian J. Plant Sci., 9, 200-208 (2010). https://doi.org/10.3923/ajps.2010.200.208
  7. Bae, S.J., Eum, H.L., Kim, B.S., Yoon, J.R., Hong, S.J., Comparison of the quality of highland-grown Kimchi cabbage 'Choon Gwang' during cold storage after pretreatments. Kor. J. Hortic. Sci. and Technol., 33, 233-241 (2015).
  8. Shim, J.Y., Kim, D.-G., Park, J.-T., Kandpal, L.M., Hong, S.-J., Cho, B.-K., Lee, W.-H., Physicochemical quality changes in Chinese cabbage with storage period and temperature: A review. J. Biosyst. Eng., 41, 373-388 (2016). https://doi.org/10.5307/JBE.2016.41.4.373
  9. Golly, M.K., Samson, S.P., Mills-Roberston, F.C., Resistance of bacteria isolates from cabbage (Brassica oleracea), carrots (Daucus carota) and lettuce (Lactuca sativa) in the Kumasi Metropolis of Ghana. Int. J. Nutr. Food Sci., 5, 297-303 (2016). https://doi.org/10.11648/j.ijnfs.20160504.20
  10. El Karkouri, A., El Hassani, F.Z., El Mzibri, M., Benlemlih, M., El Hassouni, M., Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chysanthemi 3937VIII responsible for soft rot disease. Ann. Microbiol., 60, 263-268 (2010). https://doi.org/10.1007/s13213-010-0036-1
  11. Tsuda, K., Tsuji, G., Higashiyama, M., Ogiyama, H., Umemura, K., Mitomi, M., Kubo, Y., Kosaka, Y., Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biological Control., 100, 63-69 (2016). https://doi.org/10.1016/j.biocontrol.2016.05.010
  12. Garge, S.S., Nerurkar, A.S., Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocat Agric Biotechnol., 9, 48-57 (2017). https://doi.org/10.1016/j.bcab.2016.11.004
  13. Gerayli, N., -Ravari, S.B., Tarighi, S., Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. Eur. J. Plant Pathol., 150, 1049-1063 (2018). https://doi.org/10.1007/s10658-017-1344-0
  14. Cui, W., He, P., Munir, S., He, P., He, Y., Li, X., Yang, L., Wang, B., Wu, Y., He, P., Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Front Microbiol. 2019, 10, e01471. ttps://doi.org/10.3389/fmicb.2019.01471.
  15. Perez, R.H., Zendo, T., Sonomoto, K., (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact., 13: S3. http://www.microbialcellfactories.com/content/13/S1/S3. https://doi.org/10.1186/1475-2859-13-S1-S3
  16. Albrich, J.M., McCarthy, C.A., Hurst, J.K., Biological reactivity of hypochlorous acid: Implications for microbicidal mechanism of leukocyte myeloperoxidase. Proc. Natl. Acad Sci. USA, 78, 210-214 (1981). https://doi.org/10.1073/pnas.78.1.210
  17. Goo, S.-G., Koo, J.C., Establishment of rice Bakanae disease management using slightly acidic hypochlorous acid water. J. Life Sci., 30, 178-185 (2020). https://doi.org/10.5352/JLS.2020.30.2.178
  18. Ohashi, I., Kato, K., Okamoto, M., Kobayashi, S., Takamatrsu, D., Microbicidal effects of slightly acidic hypochlorous acid water and weakly acidified chlorous acid water on foulbrood pathogens. J. Vet. Med. Sci., 82, 261-271 (2020). https://doi.org/10.1292/jvms.19-0531
  19. Ni, L., Cao, W., Zheng, W.C., Zhang, Q., Li, B.M., Reduction of microbial contamination on the surfaces of layer houses using slightly acidic electrolyzed water. Poultry Sci., 94, 2838-2848 (2015). https://doi.org/10.3382/ps/pev261
  20. Al Haq, M.I., Sugiyama, J., Isobe, S., Applications of electrolyzed water in agriculture & food industries. Food Sci. Technol. Res., 11, 135-150 (2005). https://doi.org/10.3136/fstr.11.135
  21. Song, J.Y., Kim, N., Nam, M.H., Park, B., Whang, E., Choi, J.M., Kim, H.K., Fungicidal effect of slightly acidic hypochlorous water against phytopathogenic fungi. Kor. J. Mycol., 41, 274-279 (2013). https://doi.org/10.4489/KJM.2013.41.4.274
  22. Kim, H.-J., Tango, C.N., Chelliah, R., Oh, D.-H., Sanitization efficacy of slightly acidic electrolyzed water against pure cultures of Escherichia coli, Salmonella enterica, Typhimurium, Staphylococcus aureus and Bacillus cereus spores, in comparison with different water hardeness. Sci. Rep., 9, 4348, https://doi.org/10.1038/s41598-019-40846-65 (2019).
  23. Dong, Y.-H., Zhang, X.-F., Xu, J.-L., Zhang, L.-H., Insecticidal bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol., 70, 954-960 (2004). https://doi.org/10.1128/AEM.70.2.954-960.2004
  24. Boyanova, L., Gergova, G., Nikolov, R., Derejian, S., Lazarova, E., Katsarov, N., Mitov, I., Krastev Z., Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol., 54, 481-483 (2005). https://doi.org/10.1099/jmm.0.45880-0
  25. Chang, D.-H., Rhee, M.-H., Kim, J.-S., Lee, Y.K., Park, M.Y., Kim, H.S., Lee, S.G., Kim, B.-C., Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea. Antonie Van Leeuwenhoek., 109, 1433-1446 (2016). https://doi.org/10.1007/s10482-016-0743-0
  26. Xu, L., Zhu, T., Liu, Y., Ying, Y., Lu, J., Lin, C., Ying, J., Xu, T., Ni, L., Bao, Q., Lu, S., Comparative genomics analysis of plasmid pPV989-94 from a clinical isolate of Pantoea vagans PV989. Int. J. Genomic., https://doi.org/10.1155/2018/1242819 (2018).
  27. Brady, C.L., Venter, S. N., Cleenwerck, I., Engelbeen, K., Vancanneyt, M., Swings, J., Coutinho, T.A., Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int. J. Syst. and Evol. Microbiol., 59, 2339-2345 (2009). https://doi.org/10.1099/ijs.0.009241-0
  28. Kimura, Y., Baba, K., Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: Isolation of an active substance, xanthoangelol. Int. J. Cancer., 106, 429-437 (2003). https://doi.org/10.1002/ijc.11256
  29. Park J-C., The medicinal herbs, teas, and alcoholic beverages in Donguibogam, proven by patents. Goyang: Pureun-Hyeongbok Publisher., (2013).
  30. Laitila, A., Alakomi, H.-L., Raaska, L., Matttila-Sandholm, T., Haikara, A., Antifungal activities of two Lactobacillus plantarum stains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol., 93, 566-576 (2002). https://doi.org/10.1046/j.1365-2672.2002.01731.x
  31. Trias, R., Baneras, L., Montesinos, E., Badosa, E., Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol., 11, 231-23 (2008).