Acknowledgement
This research was supported by the National Research Foundation (NRF) Grant (2021R1A2B5B03086410, 2021R1A5A2031612, 2019M3E5D1A02069621), Republic of Korea.
References
- Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N.; Australian Pancreatic Cancer Genome Initiative, Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De Borja, R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A. and Grimmond, S. M. (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399-405. https://doi.org/10.1038/nature11547
- Boutin, A. T., Liao, W. T., Wang, M., Hwang, S. S., Karpinets, T. V., Cheung, H., Chu, G. C., Jiang, S., Hu, J., Chang, K., Vilar, E., Song, X., Zhang, J., Kopetz, S., Futreal, A., Wang, Y. A., Kwong, L. N. and DePinho, R. A. (2017) Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31, 370-382. https://doi.org/10.1101/gad.293449.116
- Bryant, K. L., Mancias, J. D., Kimmelman, A. C. and Der, C. J. (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 39, 91-100. https://doi.org/10.1016/j.tibs.2013.12.004
- Cameron, J. L., Pitt, H. A., Yeo, C. J., Lillemoe, K. D., Kaufman, H. S. and Coleman, J. (1993) One hundred and forty-five consecutive pancreaticoduodenectomies without mortality. Ann. Surg. 217, 430-438. https://doi.org/10.1097/00000658-199305010-00002
- Chen, D., Lin, X., Zhang, C., Liu, Z., Chen, Z., Li, Z., Wang, J., Li, B., Hu, Y., Dong, B., Shen, L., Ji, J., Gao, J. and Zhang, X. (2018) Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/ mTOR pathway. Cell Death Dis. 9, 123. https://doi.org/10.1038/s41419-017-0132-2
- Chiarini, F., Evangelisti, C., McCubrey, J. A. and Martelli, A. M. (2015) Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci. 36, 124-135. https://doi.org/10.1016/j.tips.2014.11.004
- Ebrahimi, S., Hosseini, M., Shahidsales, S., Maftouh, M., Ferns, G. A., Ghayour-Mobarhan, M., Hassanian, S. M. and Avan, A. (2017) Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr. Med. Chem. 24, 1321-1331.
- Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
- Hancock, J. F. (2003) Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4, 373-384. https://doi.org/10.1038/nrm1105
- Hatzivassiliou, G., Haling, J. R., Chen, H., Song, K., Price, S., Heald, R., Hewitt, J. F., Zak, M., Peck, A., Orr, C., Merchant, M., Hoeflich, K. P., Chan, J., Luoh, S. M., Anderson, D. J., Ludlam, M. J., Wiesmann, C., Ultsch, M., Friedman, L. S., Malek, S. and Belvin, M. (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232-236. https://doi.org/10.1038/nature12441
- Herrera, V. A., Zeindl-Eberhart, E., Jung, A., Huber, R. M. and Bergner, A. (2011) The dual PI3K/mTOR inhibitor BEZ235 is effective in lung cancer cell lines. Anticancer Res. 31, 849-854.
- Herschel, T., El-Armouche, A. and Weber, S. (2016) Monoclonal antibodies, overview and outlook of a promising therapeutic option. Dtsch. Med. Wochenschr. 141, 1390-1394. https://doi.org/10.1055/s-0042-102980
- John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A. and Goody, R. S. (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29, 6058-6065. https://doi.org/10.1021/bi00477a025
- Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E. and Kinzler, K. W. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806. https://doi.org/10.1126/science.1164368
- Kang, Y. W., Lee, J. E., Jung, K. H., Son, M. K., Shin, S. M., Kim, S. J., Fang, Z., Yan, H. H., Park, J. H., Han, B., Cheon, M. J., Woo, M. G., Lim, J. H., Kim, Y. S. and Hong, S. S. (2018) KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett. 438, 174-186. https://doi.org/10.1016/j.canlet.2018.09.013
- Keleg, S., Buchler, P., Ludwig, R., Buchler, M. W. and Friess, H. (2003) Invasion and metastasis in pancreatic cancer. Mol. Cancer 2, 14. https://doi.org/10.1186/1476-4598-2-14
- Kim, M. J., Lee, S. J., Ryu, J. H., Kim, S. H., Kwon, I. C. and Roberts, T. M. (2020) Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J. Control. Release 318, 98-108. https://doi.org/10.1016/j.jconrel.2019.12.019
- Luszczak, S., Simpson, B. S., Stopka-Farooqui, U., Sathyadevan, V. K., Echeverria, L. M. C., Kumar, C., Costa, H., Haider, A., Freeman, A., Jameson, C., Ratynska, M., Ben-Salha, I., Sridhar, A., Shaw, G., Kelly, J. D., Pye, H., Gately, K. A., Whitaker, H. C. and Heavey, S. (2020) Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer. Sci. Rep. 10, 14380. https://doi.org/10.1038/s41598-020-71263-9
- McCormick, F. (2015) KRAS as a therapeutic target. Clin. Cancer Res. 21, 1797-1801. https://doi.org/10.1158/1078-0432.CCR-14-2662
- Murakami, S., Shiraishi, S., Miyauchi, S. and Miki, Y. (1987) False-positive Thormahlen test induced by latamoxef sodium. J. Dermatol. 14, 237-240. https://doi.org/10.1111/j.1346-8138.1987.tb03567.x
- Perysinakis, I., Avlonitis, S., Georgiadou, D., Tsipras, H. and Margaris, I. (2015) Five-year actual survival after pancreatoduodenectomy for pancreatic head cancer. ANZ J. Surg. 85, 183-186. https://doi.org/10.1111/ans.12422
- Roberts, P. J. and Der, C. J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. https://doi.org/10.1038/sj.onc.1210422
- Ruan, B., Liu, W., Chen, P., Cui, R., Li, Y., Ji, M., Hou, P. and Yang, Q. (2020) NVP-BEZ235 inhibits thyroid cancer growth by p53- dependent/independent p21 upregulation. Int. J. Biol. Sci. 16, 682-693. https://doi.org/10.7150/ijbs.37592
- Scott, A. M., Allison, J. P. and Wolchok, J. D. (2012) Monoclonal antibodies in cancer therapy. Cancer Immun. 12, 14.
- Serra, V., Markman, B., Scaltriti, M., Eichhorn, P. J., Valero, V., Guzman, M., Botero, M. L., Llonch, E., Atzori, F., Di Cosimo, S., Maira, M., Garcia-Echeverria, C., Parra, J. L., Arribas, J. and Baselga, J. (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022-8030. https://doi.org/10.1158/0008-5472.CAN-08-1385
- Shin, S. M., Choi, D. K., Jung, K., Bae, J., Kim, J. S., Park, S. W., Song, K. H. and Kim, Y. S. (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat. Commun. 8, 15090. https://doi.org/10.1038/ncomms15090
- Shin, S. M., Kim, J. S., Park, S. W., Jun, S. Y., Kweon, H. J., Choi, D. K., Lee, D., Cho, Y. B. and Kim, Y. S. (2020) Direct targeting of oncogenic RAS mutants with a tumor-specific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth. Sci. Adv. 6, eaay2174. https://doi.org/10.1126/sciadv.aay2174
- Soares, H. P., Ming, M., Mellon, M., Young, S. H., Han, L., SinnetSmith, J. and Rozengurt, E. (2015) Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human pancreatic cancer cells through suppression of mTORC2. Mol. Cancer Ther. 14, 1014-1023. https://doi.org/10.1158/1535-7163.MCT-14-0669
- Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z., Bruxner, T. J., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Wilson, P. J., Markham, E., Cloonan, N., Anderson, M. J., Fink, J. L., Holmes, O., Kazakoff, S. H., Leonard, C., Newell, F., Poudel, B., Song, S., Taylor, D., Waddell, N., Wood, S., Xu, Q., Wu, J., Pinese, M., Cowley, M. J., Lee, H. C., Jones, M. D., Nagrial, A. M., Humphris, J., Chantrill, L. A., Chin, V., Steinmann, A. M., Mawson, A., Humphrey, E. S., Colvin, E. K., Chou, A., Scarlett, C. J., Pinho, A. V., Giry-Laterriere, M., Rooman, I., Samra, J. S., Kench, J. G., Pettitt, J. A., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Jamieson, N. B., Graham, J. S., Niclou, S. P., Bjerkvig, R., Grutzmann, R., Aust, D., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Corbo, V., Bassi, C., Falconi, M., Zamboni, G., Tortora, G., Tempero, M. A.; Australian Pancreatic Cancer Genome Initiative, Gill, A. J., Eshleman, J. R., Pilarsky, C., Scarpa, A., Musgrove, E. A., Pearson, J. V., Biankin, A. V. and Grimmond, S. M. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495-501. https://doi.org/10.1038/nature14169
- Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M. and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129-3140. https://doi.org/10.1158/1535-7163.MCT-08-0013
- Witkiewicz, A. K., McMillan, E. A., Balaji, U., Baek, G., Lin, W. C., Mansour, J., Mollaee, M., Wagner, K. U., Koduru, P., Yopp, A., Choti, M. A., Yeo, C. J., McCue, P., White, M. A. and Knudsen, E. S. (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744. https://doi.org/10.1038/ncomms7744
- Zhu, Y., Tian, T., Zou, J., Wang, Q., Li, Z., Li, Y., Liu, X., Dong, B., Li, N., Gao, J. and Shen, L. (2015) Dual PI3K/mTOR inhibitor BEZ235 exerts extensive antitumor activity in HER2-positive gastric cancer. BMC Cancer 15, 894. https://doi.org/10.1186/s12885-015-1900-y