DOI QR코드

DOI QR Code

Combination Therapy of the Active KRAS-Targeting Antibody inRas37 and a PI3K Inhibitor in Pancreatic Cancer

  • Lee, Ji Eun (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Woo, Min Gyu (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Jung, Kyung Hee (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Kang, Yeo Wool (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Shin, Seung-Min (Department of Molecular Science and Technology, Ajou University) ;
  • Son, Mi Kwon (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Fang, Zhenghuan (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Yan, Hong Hua (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Park, Jung Hee (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Yoon, Young-Chan (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Kim, Yong-Sung (Department of Molecular Science and Technology, Ajou University) ;
  • Hong, Soon-Sun (Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University)
  • Received : 2021.09.07
  • Accepted : 2021.09.23
  • Published : 2022.05.01

Abstract

KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) Grant (2021R1A2B5B03086410, 2021R1A5A2031612, 2019M3E5D1A02069621), Republic of Korea.

References

  1. Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N.; Australian Pancreatic Cancer Genome Initiative, Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De Borja, R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A. and Grimmond, S. M. (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399-405. https://doi.org/10.1038/nature11547
  2. Boutin, A. T., Liao, W. T., Wang, M., Hwang, S. S., Karpinets, T. V., Cheung, H., Chu, G. C., Jiang, S., Hu, J., Chang, K., Vilar, E., Song, X., Zhang, J., Kopetz, S., Futreal, A., Wang, Y. A., Kwong, L. N. and DePinho, R. A. (2017) Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31, 370-382. https://doi.org/10.1101/gad.293449.116
  3. Bryant, K. L., Mancias, J. D., Kimmelman, A. C. and Der, C. J. (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 39, 91-100. https://doi.org/10.1016/j.tibs.2013.12.004
  4. Cameron, J. L., Pitt, H. A., Yeo, C. J., Lillemoe, K. D., Kaufman, H. S. and Coleman, J. (1993) One hundred and forty-five consecutive pancreaticoduodenectomies without mortality. Ann. Surg. 217, 430-438. https://doi.org/10.1097/00000658-199305010-00002
  5. Chen, D., Lin, X., Zhang, C., Liu, Z., Chen, Z., Li, Z., Wang, J., Li, B., Hu, Y., Dong, B., Shen, L., Ji, J., Gao, J. and Zhang, X. (2018) Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/ mTOR pathway. Cell Death Dis. 9, 123. https://doi.org/10.1038/s41419-017-0132-2
  6. Chiarini, F., Evangelisti, C., McCubrey, J. A. and Martelli, A. M. (2015) Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci. 36, 124-135. https://doi.org/10.1016/j.tips.2014.11.004
  7. Ebrahimi, S., Hosseini, M., Shahidsales, S., Maftouh, M., Ferns, G. A., Ghayour-Mobarhan, M., Hassanian, S. M. and Avan, A. (2017) Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr. Med. Chem. 24, 1321-1331.
  8. Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
  9. Hancock, J. F. (2003) Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4, 373-384. https://doi.org/10.1038/nrm1105
  10. Hatzivassiliou, G., Haling, J. R., Chen, H., Song, K., Price, S., Heald, R., Hewitt, J. F., Zak, M., Peck, A., Orr, C., Merchant, M., Hoeflich, K. P., Chan, J., Luoh, S. M., Anderson, D. J., Ludlam, M. J., Wiesmann, C., Ultsch, M., Friedman, L. S., Malek, S. and Belvin, M. (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232-236. https://doi.org/10.1038/nature12441
  11. Herrera, V. A., Zeindl-Eberhart, E., Jung, A., Huber, R. M. and Bergner, A. (2011) The dual PI3K/mTOR inhibitor BEZ235 is effective in lung cancer cell lines. Anticancer Res. 31, 849-854.
  12. Herschel, T., El-Armouche, A. and Weber, S. (2016) Monoclonal antibodies, overview and outlook of a promising therapeutic option. Dtsch. Med. Wochenschr. 141, 1390-1394. https://doi.org/10.1055/s-0042-102980
  13. John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A. and Goody, R. S. (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29, 6058-6065. https://doi.org/10.1021/bi00477a025
  14. Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E. and Kinzler, K. W. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806. https://doi.org/10.1126/science.1164368
  15. Kang, Y. W., Lee, J. E., Jung, K. H., Son, M. K., Shin, S. M., Kim, S. J., Fang, Z., Yan, H. H., Park, J. H., Han, B., Cheon, M. J., Woo, M. G., Lim, J. H., Kim, Y. S. and Hong, S. S. (2018) KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett. 438, 174-186. https://doi.org/10.1016/j.canlet.2018.09.013
  16. Keleg, S., Buchler, P., Ludwig, R., Buchler, M. W. and Friess, H. (2003) Invasion and metastasis in pancreatic cancer. Mol. Cancer 2, 14. https://doi.org/10.1186/1476-4598-2-14
  17. Kim, M. J., Lee, S. J., Ryu, J. H., Kim, S. H., Kwon, I. C. and Roberts, T. M. (2020) Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J. Control. Release 318, 98-108. https://doi.org/10.1016/j.jconrel.2019.12.019
  18. Luszczak, S., Simpson, B. S., Stopka-Farooqui, U., Sathyadevan, V. K., Echeverria, L. M. C., Kumar, C., Costa, H., Haider, A., Freeman, A., Jameson, C., Ratynska, M., Ben-Salha, I., Sridhar, A., Shaw, G., Kelly, J. D., Pye, H., Gately, K. A., Whitaker, H. C. and Heavey, S. (2020) Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer. Sci. Rep. 10, 14380. https://doi.org/10.1038/s41598-020-71263-9
  19. McCormick, F. (2015) KRAS as a therapeutic target. Clin. Cancer Res. 21, 1797-1801. https://doi.org/10.1158/1078-0432.CCR-14-2662
  20. Murakami, S., Shiraishi, S., Miyauchi, S. and Miki, Y. (1987) False-positive Thormahlen test induced by latamoxef sodium. J. Dermatol. 14, 237-240. https://doi.org/10.1111/j.1346-8138.1987.tb03567.x
  21. Perysinakis, I., Avlonitis, S., Georgiadou, D., Tsipras, H. and Margaris, I. (2015) Five-year actual survival after pancreatoduodenectomy for pancreatic head cancer. ANZ J. Surg. 85, 183-186. https://doi.org/10.1111/ans.12422
  22. Roberts, P. J. and Der, C. J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. https://doi.org/10.1038/sj.onc.1210422
  23. Ruan, B., Liu, W., Chen, P., Cui, R., Li, Y., Ji, M., Hou, P. and Yang, Q. (2020) NVP-BEZ235 inhibits thyroid cancer growth by p53- dependent/independent p21 upregulation. Int. J. Biol. Sci. 16, 682-693. https://doi.org/10.7150/ijbs.37592
  24. Scott, A. M., Allison, J. P. and Wolchok, J. D. (2012) Monoclonal antibodies in cancer therapy. Cancer Immun. 12, 14.
  25. Serra, V., Markman, B., Scaltriti, M., Eichhorn, P. J., Valero, V., Guzman, M., Botero, M. L., Llonch, E., Atzori, F., Di Cosimo, S., Maira, M., Garcia-Echeverria, C., Parra, J. L., Arribas, J. and Baselga, J. (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022-8030. https://doi.org/10.1158/0008-5472.CAN-08-1385
  26. Shin, S. M., Choi, D. K., Jung, K., Bae, J., Kim, J. S., Park, S. W., Song, K. H. and Kim, Y. S. (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat. Commun. 8, 15090. https://doi.org/10.1038/ncomms15090
  27. Shin, S. M., Kim, J. S., Park, S. W., Jun, S. Y., Kweon, H. J., Choi, D. K., Lee, D., Cho, Y. B. and Kim, Y. S. (2020) Direct targeting of oncogenic RAS mutants with a tumor-specific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth. Sci. Adv. 6, eaay2174. https://doi.org/10.1126/sciadv.aay2174
  28. Soares, H. P., Ming, M., Mellon, M., Young, S. H., Han, L., SinnetSmith, J. and Rozengurt, E. (2015) Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human pancreatic cancer cells through suppression of mTORC2. Mol. Cancer Ther. 14, 1014-1023. https://doi.org/10.1158/1535-7163.MCT-14-0669
  29. Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z., Bruxner, T. J., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Wilson, P. J., Markham, E., Cloonan, N., Anderson, M. J., Fink, J. L., Holmes, O., Kazakoff, S. H., Leonard, C., Newell, F., Poudel, B., Song, S., Taylor, D., Waddell, N., Wood, S., Xu, Q., Wu, J., Pinese, M., Cowley, M. J., Lee, H. C., Jones, M. D., Nagrial, A. M., Humphris, J., Chantrill, L. A., Chin, V., Steinmann, A. M., Mawson, A., Humphrey, E. S., Colvin, E. K., Chou, A., Scarlett, C. J., Pinho, A. V., Giry-Laterriere, M., Rooman, I., Samra, J. S., Kench, J. G., Pettitt, J. A., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Jamieson, N. B., Graham, J. S., Niclou, S. P., Bjerkvig, R., Grutzmann, R., Aust, D., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Corbo, V., Bassi, C., Falconi, M., Zamboni, G., Tortora, G., Tempero, M. A.; Australian Pancreatic Cancer Genome Initiative, Gill, A. J., Eshleman, J. R., Pilarsky, C., Scarpa, A., Musgrove, E. A., Pearson, J. V., Biankin, A. V. and Grimmond, S. M. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495-501. https://doi.org/10.1038/nature14169
  30. Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M. and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129-3140. https://doi.org/10.1158/1535-7163.MCT-08-0013
  31. Witkiewicz, A. K., McMillan, E. A., Balaji, U., Baek, G., Lin, W. C., Mansour, J., Mollaee, M., Wagner, K. U., Koduru, P., Yopp, A., Choti, M. A., Yeo, C. J., McCue, P., White, M. A. and Knudsen, E. S. (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744. https://doi.org/10.1038/ncomms7744
  32. Zhu, Y., Tian, T., Zou, J., Wang, Q., Li, Z., Li, Y., Liu, X., Dong, B., Li, N., Gao, J. and Shen, L. (2015) Dual PI3K/mTOR inhibitor BEZ235 exerts extensive antitumor activity in HER2-positive gastric cancer. BMC Cancer 15, 894. https://doi.org/10.1186/s12885-015-1900-y