DOI QR코드

DOI QR Code

Direct Contact with Platelets Induces Podoplanin Expression and Invasion in Human Oral Squamous Cell Carcinoma Cells

  • Park, Se-Young (Department of Applied Life Science, The Graduate School, Yonsei University) ;
  • Lee, Sun Kyoung (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Lim, Mihwa (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Kim, Bomi (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Hwang, Byeong-Oh (Department of Applied Life Science, The Graduate School, Yonsei University) ;
  • Cho, Eunae Sandra (BK21 Four Project, Yonsei University College of Dentistry) ;
  • Zhang, Xianglan (Oral Cancer Research Institute, Yonsei University College of Dentistry) ;
  • Chun, Kyung-Soo (College of Pharmacy, Keimyung University) ;
  • Chung, Won-Yoon (Department of Applied Life Science, The Graduate School, Yonsei University) ;
  • Song, Na-Young (Department of Applied Life Science, The Graduate School, Yonsei University)
  • 투고 : 2021.10.25
  • 심사 : 2022.01.07
  • 발행 : 2022.05.01

초록

Oral squamous cell carcinoma (OSCC) is mostly diagnosed at an advanced stage, with local and/or distal metastasis. Thus, locoregional and/or local control of the primary tumor is crucial for a better prognosis in patients with OSCC. Platelets have long been considered major players in cancer metastasis. Traditional antiplatelet agents, such as aspirin, are thought to be potential chemotherapeutics, but they need to be used with caution because of the increased bleeding risk. Podoplanin (PDPN)-expressing cancer cells can activate platelets and promote OSCC metastasis. However, the reciprocal effect of platelets on PDPN expression in OSCC has not been investigated. In this study, we found that direct contact with platelets upregulated PDPN and integrin β1 at the protein level and promoted invasiveness of human OSCC Ca9.22 cells that express low levels of PDPN. In another human OSCC HSC3 cell line that express PDPN at an abundant level, silencing of the PDPN gene reduced cell invasiveness. Analysis of the public database further supported the co-expression of PDPN and integrin β1 and their increased expression in metastatic tissues compared to normal and tumor tissues of the oral cavity. Taken together, these data suggest that PDPN is a potential target to regulate platelet-tumor interaction and metastasis for OSCC treatment, which can overcome the limitations of traditional antiplatelet drugs.

키워드

과제정보

This study was supported by Yonsei University College of Dentistry Fund (6-2019-0022).

참고문헌

  1. Astarita, J. L., Acton, S. E. and Turley, S. J. (2012) Podoplanin: emerging functions in development, the immune system, and cancer. Front. Immunol. 3, 283. https://doi.org/10.3389/fimmu.2012.00283
  2. Aurbach, K., Spindler, M., Haining, E. J., Bender, M. and Pleines, I. (2019) Blood collection, platelet isolation and measurement of platelet count and size in mice-a practical guide. Platelets 30, 698-707. https://doi.org/10.1080/09537104.2018.1528345
  3. Bardash, Y., Olson, C., Herman, W., Khaymovich, J., Costantino, P. and Tham, T. (2019) Platelet-lymphocyte ratio as a predictor of prognosis in head and neck cancer: a systematic review and meta-analysis. Oncol. Res. Treat. 42, 665-677. https://doi.org/10.1159/000502750
  4. Bartha, A. and Gyorffy, B. (2021) TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 22, 2622. https://doi.org/10.3390/ijms22052622
  5. Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M. and Moses, H. L. (2001) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276, 46707-46713. https://doi.org/10.1074/jbc.M106176200
  6. Braakhuis, B. J., Brakenhoff, R. H. and Leemans, C. R. (2012) Treatment choice for locally advanced head and neck cancers on the basis of risk factors: biological risk factors. Ann. Oncol. 23 Suppl 10, x173-x177. https://doi.org/10.1093/annonc/mds299
  7. Bugshan, A. and Farooq, I. (2020) Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 9, 229. https://doi.org/10.12688/f1000research.22941.1
  8. Chow, L. Q. M. (2020) Head and neck cancer. N. Engl. J. Med. 382, 60-72. https://doi.org/10.1056/nejmra1715715
  9. Cooper, J. and Giancotti, F. G. (2019) Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35, 347-367. https://doi.org/10.1016/j.ccell.2019.01.007
  10. Flaumenhaft, R. (2003) Molecular basis of platelet granule secretion. Arterioscler. Thromb. Vasc. Biol. 23, 1152-1160. https://doi.org/10.1161/01.ATV.0000075965.88456.48
  11. Furlan, C., Steffan, A., Polesel, J., Trovo, M., Gobitti, C., Vaccher, E., Serraino, D., Barzan, L. and Franchin, G. (2015) Lower platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma: a retrospective analysis. Biomark. Res. 3, 25. https://doi.org/10.1186/s40364-015-0051-2
  12. Gay, L. J. and Felding-Habermann, B. (2011) Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell 20, 553-554. https://doi.org/10.1016/j.ccr.2011.11.001
  13. Goldman, M. J., Craft, B., Hastie, M., Repecka, K., McDade, F., Kamath, A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A. N., Zhu, J. and Haussler, D. (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675-678. https://doi.org/10.1038/s41587-020-0546-8
  14. Grau, S. J., Trillsch, F., Tonn, J. C., Goldbrunner, R. H., Noessner, E., Nelson, P. J. and von Luettichau, I. (2015) Podoplanin increases migration and angiogenesis in malignant glioma. Int. J. Clin. Exp. Pathol. 8, 8663-8670.
  15. Guo, Y., Cui, W., Pei, Y. and Xu, D. (2019) Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-beta signaling pathway. Gynecol. Oncol. 153, 639-650. https://doi.org/10.1016/j.ygyno.2019.02.026
  16. Haemmerle, M., Taylor, M. L., Gutschner, T., Pradeep, S., Cho, M. S., Sheng, J., Lyons, Y. M., Nagaraja, A. S., Dood, R. L., Wen, Y., Mangala, L. S., Hansen, J. M., Rupaimoole, R., Gharpure, K. M., Rodriguez-Aguayo, C., Yim, S. Y., Lee, J. S., Ivan, C., Hu, W., Lopez-Berestein, G., Wong, S. T., Karlan, B. Y., Levine, D. A., Liu, J., Afshar-Kharghan, V. and Sood, A. K. (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8, 310. https://doi.org/10.1038/s41467-017-00411-z
  17. Hwang, Y. S., Xianglan, Z., Park, K. K. and Chung, W. Y. (2012) Functional invadopodia formation through stabilization of the PDPN transcript by IMP-3 and cancer-stromal crosstalk for PDPN expression. Carcinogenesis 33, 2135-2146. https://doi.org/10.1093/carcin/bgs258
  18. Ichikawa, J., Ando, T., Kawasaki, T., Sasaki, T., Shirai, T., Tsukiji, N., Kimura, Y., Aoki, K., Hayakawa, K., Suzuki-Inoue, K., Saitoh, M. and Haro, H. (2020) Role of platelet C-type lectin-like receptor 2 in promoting lung metastasis in osteosarcoma. J. Bone Miner. Res. 35, 1738-1750. https://doi.org/10.1002/jbmr.4045
  19. Ikeda, M., Furukawa, H., Imamura, H., Shimizu, J., Ishida, H., Masutani, S., Tatsuta, M. and Satomi, T. (2002) Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann. Surg. Oncol. 9, 287-291. https://doi.org/10.1007/BF02573067
  20. Irani, S. (2016) Distant metastasis from oral cancer: a review and molecular biologic aspects. J. Int. Soc. Prev. Community Dent. 6, 265-271. https://doi.org/10.4103/2231-0762.186805
  21. Ishikawa, S., Miyashita, T., Inokuchi, M., Hayashi, H., Oyama, K., Tajima, H., Takamura, H., Ninomiya, I., Ahmed, A. K., Harman, J. W., Fushida, S. and Ohta, T. (2016) Platelets surrounding primary tumor cells are related to chemoresistance. Oncol. Rep. 36, 787-794. https://doi.org/10.3892/or.2016.4898
  22. Jurk, K. and Kehrel, B. E. (2005) Platelets: physiology and biochemistry. Semin. Thromb. Hemost. 31, 381-392. https://doi.org/10.1055/s-2005-916671
  23. Krishnan, H., Rayes, J., Miyashita, T., Ishii, G., Retzbach, E. P., Sheehan, S. A., Takemoto, A., Chang, Y. W., Yoneda, K., Asai, J., Jensen, L., Chalise, L., Natsume, A. and Goldberg, G. S. (2018) Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 109, 1292-1299. https://doi.org/10.1111/cas.13580
  24. Labelle, M., Begum, S. and Hynes, R. O. (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576-590. https://doi.org/10.1016/j.ccr.2011.09.009
  25. Labelle, M., Begum, S. and Hynes, R. O. (2014) Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. U.S.A. 111, E3053- E3061.
  26. Lee, H. Y., Yu, N. Y., Lee, S. H., Tsai, H. J., Wu, C. C., Cheng, J. C., Chen, D. P., Wang, Y. R. and Tseng, C. P. (2020a) Podoplanin promotes cancer-associated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer. Biomed. J. 43, 146-162. https://doi.org/10.1016/j.bj.2019.07.001
  27. Lee, S., Kim, D. W., Kwon, S., Kim, H. J., Cha, I. H. and Nam, W. (2020b) Prognostic value of systemic inflammatory markers for oral cancer patients based on the 8th edition of AJCC staging system. Sci. Rep. 10, 12111. https://doi.org/10.1038/s41598-020-68991-3
  28. Lin, H. C., Wu, C. L., Chen, Y. L., Huang, J. S., Wong, T. Y. and Yuan, K. (2014) High-level beta1-integrin expression in a subpopulation of highly tumorigenic oral cancer cells. Clin. Oral Investig. 18, 1277-1284. https://doi.org/10.1007/s00784-013-1088-y
  29. Lowe, K. L., Navarro-Nunez, L. and Watson, S. P. (2012) Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb. Res. 129 Suppl 1, S30-S37.
  30. Puram, S. V., Tirosh, I., Parikh, A. S., Patel, A. P., Yizhak, K., Gillespie, S., Rodman, C., Luo, C. L., Mroz, E. A., Emerick, K. S., Deschler, D. G., Varvares, M. A., Mylvaganam, R., Rozenblatt-Rosen, O., Rocco, J. W., Faquin, W. C., Lin, D. T., Regev, A. and Bernstein, B. E. (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611-1624.e24. https://doi.org/10.1016/j.cell.2017.10.044
  31. Rachidi, S., Wallace, K., Day, T. A., Alberg, A. J. and Li, Z. (2014) Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. J. Hematol. Oncol. 7, 65. https://doi.org/10.1186/s13045-014-0065-5
  32. Retzbach, E. P., Sheehan, S. A., Nevel, E. M., Batra, A., Phi, T., Nguyen, A. T. P., Kato, Y., Baredes, S., Fatahzadeh, M., Shienbaum, A. J. and Goldberg, G. S. (2018) Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol. 78, 126-136. https://doi.org/10.1016/j.oraloncology.2018.01.011
  33. Scholl, F. G., Gamallo, C. and Quintanilla, M. (2000) Ectopic expression of PA2.26 antigen in epidermal keratinocytes leads to destabilization of adherens junctions and malignant progression. Lab. Invest. 80, 1749-1759. https://doi.org/10.1038/labinvest.3780185
  34. Serebruany, V. L., Cherepanov, V., Cabrera-Fuentes, H. A. and Kim, M. H. (2015) Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thromb. Haemost. 114, 1104-1112. https://doi.org/10.1160/TH15-01-0077
  35. Sesartic, M., Ikenberg, K., Yoon, S. Y. and Detmar, M. (2020) Keratinocyte-expressed podoplanin is dispensable for multi-step skin carcinogenesis. Cells 9, 1542. https://doi.org/10.3390/cells9061542
  36. Shibue, T. and Weinberg, R. A. (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. U.S.A. 106, 10290-10295. https://doi.org/10.1073/pnas.0904227106
  37. Shrivastava, S., Steele, R., Sowadski, M., Crawford, S. E., Varvares, M. and Ray, R. B. (2015) Identification of molecular signature of head and neck cancer stem-like cells. Sci. Rep. 5, 7819. https://doi.org/10.1038/srep07819
  38. Song, N. Y., Zhu, F., Wang, Z., Willette-Brown, J., Xi, S., Sun, Z., Su, L., Wu, X., Ma, B., Nussinov, R., Xia, X., Schrump, D. S., Johnson, P. F., Karin, M. and Hu, Y. (2018) IKKalpha inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc. Natl. Acad. Sci. U.S.A. 115, E812-E821.
  39. Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., Yamazaki, Y., Narimatsu, H. and Ozaki, Y. (2007) Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J. Biol. Chem. 282, 25993-26001. https://doi.org/10.1074/jbc.M702327200
  40. Tsukiji, N., Osada, M., Sasaki, T., Shirai, T., Satoh, K., Inoue, O., Umetani, N., Mochizuki, C., Saito, T., Kojima, S., Shinmori, H., Ozaki, Y. and Suzuki-Inoue, K. (2018) Cobalt hematoporphyrin inhibits CLEC-2-podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice. Blood Adv. 2, 2214-2225. https://doi.org/10.1182/bloodadvances.2018016261
  41. Tsuneki, M., Yamazaki, M., Maruyama, S., Cheng, J. and Saku, T. (2013) Podoplanin-mediated cell adhesion through extracellular matrix in oral squamous cell carcinoma. Lab. Invest. 93, 921-932. https://doi.org/10.1038/labinvest.2013.86
  42. van Zijl, F., Krupitza, G. and Mikulits, W. (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res. 728, 23-34. https://doi.org/10.1016/j.mrrev.2011.05.002
  43. Wang, Y., Sun, Y., Li, D., Zhang, L., Wang, K., Zuo, Y., Gartner, T. K. and Liu, J. (2013) Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS ONE 8, e80780. https://doi.org/10.1371/journal.pone.0080780
  44. Ward, L. S. C., Sheriff, L., Marshall, J. L., Manning, J. E., Brill, A., Nash, G. B. and McGettrick, H. M. (2019) Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J. Cell Sci. 132, jcs222067. https://doi.org/10.1242/jcs.222067
  45. Watanabe, N., Kidokoro, M., Tanaka, M., Inoue, S., Tsuji, T., Akatuska, H., Okada, C., Iida, Y., Okada, Y., Suzuki, Y., Sato, T., Yahata, T., Hirayama, N., Nakagawa, Y. and Inokuchi, S. (2020) Podoplanin is indispensable for cell motility and platelet-induced epithelial-to-mesenchymal transition-related gene expression in esophagus squamous carcinoma TE11A cells. Cancer Cell Int. 20, 263. https://doi.org/10.1186/s12935-020-01328-2
  46. Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C. and Honn, K. V. (2017) Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev. 36, 305-329. https://doi.org/10.1007/s10555-017-9683-z
  47. Wu, Y. Y., Chang, K. P., Ho, T. Y., Chou, W. C., Hung, S. P., Fan, K. H., Chiang, Y. Y., Chou, Y. C. and Tsang, N. M. (2021) Comparative prognostic value of different preoperative complete blood count cell ratios in patients with oral cavity cancer treated with surgery and postoperative radiotherapy. Cancer Med. 10, 1975-1988. https://doi.org/10.1002/cam4.3738
  48. Yu, D., Liu, B., Zhang, L. and Du, K. (2013) Platelet count predicts prognosis in operable non-small cell lung cancer. Exp. Ther. Med. 5, 1351-1354. https://doi.org/10.3892/etm.2013.1003
  49. Yuan, P., Temam, S., El-Naggar, A., Zhou, X., Liu, D. D., Lee, J. J. and Mao, L. (2006) Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 107, 563-569. https://doi.org/10.1002/cncr.22061
  50. Zhang, X., Liu, Y., Gilcrease, M. Z., Yuan, X. H., Clayman, G. L., AdlerStorthz, K. and Chen, Z. (2002) A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 95, 1663-1672. https://doi.org/10.1002/cncr.10837
  51. Zhu, L., Cho, E., Zhao, G., Roh, M. R. and Zheng, Z. (2019) The pathogenic effect of cortactin tyrosine phosphorylation in cutaneous squamous cell carcinoma. In Vivo 33, 393-400. https://doi.org/10.21873/invivo.11486