Acknowledgement
The authors express their gratitude to the National Natural Science Foundation of China (Grant no. 81973555, and 81760668), Department of Science and Technology of Jilin Province (Grant no. 20190304084YY and YDZJ202101ZYTS106).
References
- Addolorato, G., Mirijello, A., Barrio, P. and Gual, A. (2016) Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol. 65, 618-630. https://doi.org/10.1016/j.jhep.2016.04.029
- Adinolfi, E., Giuliani, A. L., De Marchi, E., Pegoraro, A., Orioli, E. and Di Virgilio, F. (2018) The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. 151, 234-244. https://doi.org/10.1016/j.bcp.2017.12.021
- Alakurtti, S., Makela, T., Koskimies, S. and Yli-Kauhaluoma, J. (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 29, 1-13. https://doi.org/10.1016/j.ejps.2006.04.006
- Bai, T., Yang, Y., Yao, Y. L., Sun, P., Lian, L. H., Wu, Y. L. and Nan, J. X. (2016) Betulin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway. Pharmacol. Res. 105, 1-12. https://doi.org/10.1016/j.phrs.2015.12.022
- Barroso, E., Rodriguez-Calvo, R., Serrano-Marco, L., Astudillo, A. M., Balsinde, J., Palomer, X. and Vazquez-Carrera, M. (2011) The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 152, 1848-1859. https://doi.org/10.1210/en.2010-1468
- Bertola, A., Mathews, S., Ki, S. H., Wang, H. and Gao, B. (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 3, 627-637.
- Bi, L., Jiang, Z. and Zhou, J. (2015) The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol. 50, 146-151. https://doi.org/10.1093/alcalc/agu102
- Cui, Z. Y., Wang, G., Zhang, J., Song, J., Jiang, Y. C., Dou, J. Y., Lian, L. H., Nan, J. X. and Wu, Y. L. (2021) Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother. Res. 35, 5680-5693. https://doi.org/10.1002/ptr.7214
- Del Campo, J. A., Gallego, P. and Grande, L. (2018) Role of inflammatory response in liver diseases: therapeutic strategies. World J. Hepatol. 10, 1-7. https://doi.org/10.4254/wjh.v10.i1.1
- Donkor, J., Zhang, P., Wong, S., O'Loughlin, L., Dewald, J., Kok, B. P., Brindley, D. N. and Reue, K. (2009) A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J. Biol. Chem. 284, 29968-29978. https://doi.org/10.1074/jbc.M109.023663
- Ertunc, M. E. and Hotamisligil, G. S. (2016) Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099-2114. https://doi.org/10.1194/jlr.R066514
- Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E., and Di Virgilio, F. (2006) The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877-3883. https://doi.org/10.4049/jimmunol.176.7.3877
- Galli, A., Pinaire, J., Fischer, M., Dorris, R. and Crabb, D. W. (2001) The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 276, 68-75. https://doi.org/10.1074/jbc.M008791200
- Grymel, M., Zawojak, M. and Adamek, J. (2019) Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: a comprehensive review. J. Nat. Prod. 82, 1719-1730. https://doi.org/10.1021/acs.jnatprod.8b00830
- Han, X., Cui, Z. Y., Song, J., Piao, H. Q., Lian, L. H., Hou, L. S., Wang, G., Zheng, S., Dong, X. X., Nan, J. X. and Wu, Y. L. (2019) Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem. Biol. Interact. 311, 108794. https://doi.org/10.1016/j.cbi.2019.108794
- Han, X., Wu, Y. L., Yang, Q. and Cao, G. (2021) Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol. Ther. 222, 107791. https://doi.org/10.1016/j.pharmthera.2020.107791
- Haneklaus, M. and O'Neill, L. A. (2015) NLRP3 at the interface of metabolism and inflammation. Immunol. Rev. 265, 53-62. https://doi.org/10.1111/imr.12285
- Hou, L. S., Cui, Z. Y., Sun, P., Piao, H. Q., Han, X., Song, J., Wang, G., Zheng, S., Dong, X. X, Gao, L., Zhu, Y., Lian, L .H., Nan, J. X. and Wu, Y. L. (2020) Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. J. Funct. Foods 64, 103700. https://doi.org/10.1016/j.jff.2019.103700
- Huang, C., Yu, W., Cui, H., Wang, Y., Zhang, L., Han, F. and Huang, T. (2014) P2X7 blockade attenuates mouse liver fibrosis. Mol. Med. Rep. 9, 57-62. https://doi.org/10.3892/mmr.2013.1807
- Koh, Y. K., Lee, M. Y., Kim, J. W., Kim, M., Moon, J. S., Lee, Y. J., Ahn, Y. H. and Kim, K. S. (2008) Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J. Biol. Chem. 283, 34896-3906. https://doi.org/10.1074/jbc.M804007200
- Liu, J. (2014) Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 20, 14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672
- Lorden, G., Sanjuan-Garcia, I., de Pablo, N., Meana, C., Alvarez-Miguel, I., Perez-Garcia, M. T., Pelegrin, P., Balsinde, J. and Balboa, M. A. (2017) Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J. Exp. Med. 214, 511-528. https://doi.org/10.1084/jem.20161452
- Menon, K. V., Gores, G. J. and Shah, V. H. (2001) Pathogenesis, diagnosis, and treatment of alcoholic liver disease. Mayo Clin. Proc. 76, 1021-1029. https://doi.org/10.4065/76.10.1021
- Nanji, A. A., Dannenberg, A. J., Jokelainen, K. and Bass, N. M. (2004) Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J. Pharmacol. Exp. Ther. 310, 417-424. https://doi.org/10.1124/jpet.103.064717
- Ogura, Y., Sutterwala, F. S. and Flavell, R. A. (2006) The inflammasome: first line of the immune response to cell stress. Cell 126, 659-662. https://doi.org/10.1016/j.cell.2006.08.002
- Ruiz, R., Jideonwo, V., Ahn, M., Surendran, S., Tagliabracci, V. S., Hou, Y., Gamble, A., Kerner, J., Irimia-Dominguez, J. M., Puchowicz, M. A., DePaoli-Roach, A., Hoppel, C., Roach, P. and Morral, N. (2014) Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J. Biol. Chem. 289, 5510-5517. https://doi.org/10.1074/jbc.M113.541110
- Shao, B. Z., Xu, Z. Q., Han, B. Z., Su, D. F. and Liu, C. (2015) NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol. 6, 262. https://doi.org/10.3389/fphar.2015.00262
- Shimano, H. (2000) Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver. Trends Cardiovasc. Med. 10, 275-278. https://doi.org/10.1016/S1050-1738(00)00079-7
- Song, J., Han, X., Yao, Y. L., Li, Y. M., Zhang, J., Shao, D. Y., Hou, L. S., Fan, Y., Song, S. Z., Lian, L. H., Nan, J. X. and Wu, Y. L. (2018) Acanthoic acid suppresses lipin1/2 via TLR4 and IRAK4 signalling pathways in EtOH- and lipopolysaccharide-induced hepatic lipogenesis. J. Pharm. Pharmacol. 70, 393-403. https://doi.org/10.1111/jphp.12877
- Walther, T. C. and Farese, R. V., Jr. (2012) Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687-714. https://doi.org/10.1146/annurev-biochem-061009-102430
- Wan, Y., Jiang, S., Lian, L. H., Bai, T., Cui, P. H., Sun, X. T., Jin, X. J., Wu, Y. L. and Nan, J. X. (2013) Betulinic acid and betulin ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro. Int. Immunopharmacol. 17, 184-190. https://doi.org/10.1016/j.intimp.2013.06.012
- Wu, Y. L., Zhang, Y. J., Yao, Y. L., Li, Z. M., Han, X., Lian, L. H., Zhao, Y. Q. and Nan, J. X. (2016) Cucurbitacin E ameliorates hepatic fibrosis in vivo and in vitro through activation of AMPK and blocking mTOR-dependent signaling pathway. Toxicol. Lett. 258, 147-158. https://doi.org/10.1016/j.toxlet.2016.06.2102
- Yao, Y. L., Han, X., Li, Z. M., Lian, L. H., Nan, J. X. and Wu, Y. L. (2017a) Acanthoic acid can partially prevent alcohol exposureinduced liver lipid deposition and inflammation. Front. Pharmacol. 8, 134.
- Yao, Y. L., Han, X., Song, J., Zhang, J., Li, Y. M., Lian, L. H., Wu, Y. L. and Nan, J. X. (2017b) Acanthoic acid protects against ethanol-induced liver injury: possible role of AMPK activation and IRAK4 inhibition. Toxicol. Lett. 281, 127-138. https://doi.org/10.1016/j.toxlet.2017.09.020
- You, M. and Arteel, G. E. (2019) Effect of ethanol on lipid metabolism. J. Hepatol. 70, 237-248. https://doi.org/10.1016/j.jhep.2018.10.037
- Zhang, Y., Jiang, M., Cui, B. W., Jin, C. H., Wu, Y. L., Shang. Y., Yang, H. X., Wu, M., Liu, J., Qiao, C. Y., Zhan, Z. Y., Ye, H., Zheng, G. H., Jin, Q., Lian, L. H. and Nan, J. X. (2020) P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: a new strategy towards macrophage-hepatocyte cross-talk. Br. J. Pharmacol. 177, 2793-2811. https://doi.org/10.1111/bph.15007