DOI QR코드

DOI QR Code

Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation

  • Dou, Jia-Yi (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Jiang, Yu-Chen (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Hu, Zhong-He (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Yao, Kun-Chen (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Yuan, Ming-Hui (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Bao, Xiao-Xue (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Zhou, Mei-Jie (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Liu, Yue (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Li, Zhao-Xu (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Lian, Li-Hua (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Nan, Ji-Xing (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University) ;
  • Wu, Yan-Ling (Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University)
  • Received : 2021.08.23
  • Accepted : 2021.11.01
  • Published : 2022.05.01

Abstract

The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.

Keywords

Acknowledgement

The authors express their gratitude to the National Natural Science Foundation of China (Grant no. 81973555, and 81760668), Department of Science and Technology of Jilin Province (Grant no. 20190304084YY and YDZJ202101ZYTS106).

References

  1. Addolorato, G., Mirijello, A., Barrio, P. and Gual, A. (2016) Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol. 65, 618-630. https://doi.org/10.1016/j.jhep.2016.04.029
  2. Adinolfi, E., Giuliani, A. L., De Marchi, E., Pegoraro, A., Orioli, E. and Di Virgilio, F. (2018) The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. 151, 234-244. https://doi.org/10.1016/j.bcp.2017.12.021
  3. Alakurtti, S., Makela, T., Koskimies, S. and Yli-Kauhaluoma, J. (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 29, 1-13. https://doi.org/10.1016/j.ejps.2006.04.006
  4. Bai, T., Yang, Y., Yao, Y. L., Sun, P., Lian, L. H., Wu, Y. L. and Nan, J. X. (2016) Betulin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway. Pharmacol. Res. 105, 1-12. https://doi.org/10.1016/j.phrs.2015.12.022
  5. Barroso, E., Rodriguez-Calvo, R., Serrano-Marco, L., Astudillo, A. M., Balsinde, J., Palomer, X. and Vazquez-Carrera, M. (2011) The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 152, 1848-1859. https://doi.org/10.1210/en.2010-1468
  6. Bertola, A., Mathews, S., Ki, S. H., Wang, H. and Gao, B. (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 3, 627-637.
  7. Bi, L., Jiang, Z. and Zhou, J. (2015) The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol. 50, 146-151. https://doi.org/10.1093/alcalc/agu102
  8. Cui, Z. Y., Wang, G., Zhang, J., Song, J., Jiang, Y. C., Dou, J. Y., Lian, L. H., Nan, J. X. and Wu, Y. L. (2021) Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother. Res. 35, 5680-5693. https://doi.org/10.1002/ptr.7214
  9. Del Campo, J. A., Gallego, P. and Grande, L. (2018) Role of inflammatory response in liver diseases: therapeutic strategies. World J. Hepatol. 10, 1-7. https://doi.org/10.4254/wjh.v10.i1.1
  10. Donkor, J., Zhang, P., Wong, S., O'Loughlin, L., Dewald, J., Kok, B. P., Brindley, D. N. and Reue, K. (2009) A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J. Biol. Chem. 284, 29968-29978. https://doi.org/10.1074/jbc.M109.023663
  11. Ertunc, M. E. and Hotamisligil, G. S. (2016) Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099-2114. https://doi.org/10.1194/jlr.R066514
  12. Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E., and Di Virgilio, F. (2006) The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877-3883. https://doi.org/10.4049/jimmunol.176.7.3877
  13. Galli, A., Pinaire, J., Fischer, M., Dorris, R. and Crabb, D. W. (2001) The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 276, 68-75. https://doi.org/10.1074/jbc.M008791200
  14. Grymel, M., Zawojak, M. and Adamek, J. (2019) Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: a comprehensive review. J. Nat. Prod. 82, 1719-1730. https://doi.org/10.1021/acs.jnatprod.8b00830
  15. Han, X., Cui, Z. Y., Song, J., Piao, H. Q., Lian, L. H., Hou, L. S., Wang, G., Zheng, S., Dong, X. X., Nan, J. X. and Wu, Y. L. (2019) Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem. Biol. Interact. 311, 108794. https://doi.org/10.1016/j.cbi.2019.108794
  16. Han, X., Wu, Y. L., Yang, Q. and Cao, G. (2021) Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol. Ther. 222, 107791. https://doi.org/10.1016/j.pharmthera.2020.107791
  17. Haneklaus, M. and O'Neill, L. A. (2015) NLRP3 at the interface of metabolism and inflammation. Immunol. Rev. 265, 53-62. https://doi.org/10.1111/imr.12285
  18. Hou, L. S., Cui, Z. Y., Sun, P., Piao, H. Q., Han, X., Song, J., Wang, G., Zheng, S., Dong, X. X, Gao, L., Zhu, Y., Lian, L .H., Nan, J. X. and Wu, Y. L. (2020) Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. J. Funct. Foods 64, 103700. https://doi.org/10.1016/j.jff.2019.103700
  19. Huang, C., Yu, W., Cui, H., Wang, Y., Zhang, L., Han, F. and Huang, T. (2014) P2X7 blockade attenuates mouse liver fibrosis. Mol. Med. Rep. 9, 57-62. https://doi.org/10.3892/mmr.2013.1807
  20. Koh, Y. K., Lee, M. Y., Kim, J. W., Kim, M., Moon, J. S., Lee, Y. J., Ahn, Y. H. and Kim, K. S. (2008) Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J. Biol. Chem. 283, 34896-3906. https://doi.org/10.1074/jbc.M804007200
  21. Liu, J. (2014) Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 20, 14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672
  22. Lorden, G., Sanjuan-Garcia, I., de Pablo, N., Meana, C., Alvarez-Miguel, I., Perez-Garcia, M. T., Pelegrin, P., Balsinde, J. and Balboa, M. A. (2017) Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J. Exp. Med. 214, 511-528. https://doi.org/10.1084/jem.20161452
  23. Menon, K. V., Gores, G. J. and Shah, V. H. (2001) Pathogenesis, diagnosis, and treatment of alcoholic liver disease. Mayo Clin. Proc. 76, 1021-1029. https://doi.org/10.4065/76.10.1021
  24. Nanji, A. A., Dannenberg, A. J., Jokelainen, K. and Bass, N. M. (2004) Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J. Pharmacol. Exp. Ther. 310, 417-424. https://doi.org/10.1124/jpet.103.064717
  25. Ogura, Y., Sutterwala, F. S. and Flavell, R. A. (2006) The inflammasome: first line of the immune response to cell stress. Cell 126, 659-662. https://doi.org/10.1016/j.cell.2006.08.002
  26. Ruiz, R., Jideonwo, V., Ahn, M., Surendran, S., Tagliabracci, V. S., Hou, Y., Gamble, A., Kerner, J., Irimia-Dominguez, J. M., Puchowicz, M. A., DePaoli-Roach, A., Hoppel, C., Roach, P. and Morral, N. (2014) Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J. Biol. Chem. 289, 5510-5517. https://doi.org/10.1074/jbc.M113.541110
  27. Shao, B. Z., Xu, Z. Q., Han, B. Z., Su, D. F. and Liu, C. (2015) NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol. 6, 262. https://doi.org/10.3389/fphar.2015.00262
  28. Shimano, H. (2000) Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver. Trends Cardiovasc. Med. 10, 275-278. https://doi.org/10.1016/S1050-1738(00)00079-7
  29. Song, J., Han, X., Yao, Y. L., Li, Y. M., Zhang, J., Shao, D. Y., Hou, L. S., Fan, Y., Song, S. Z., Lian, L. H., Nan, J. X. and Wu, Y. L. (2018) Acanthoic acid suppresses lipin1/2 via TLR4 and IRAK4 signalling pathways in EtOH- and lipopolysaccharide-induced hepatic lipogenesis. J. Pharm. Pharmacol. 70, 393-403. https://doi.org/10.1111/jphp.12877
  30. Walther, T. C. and Farese, R. V., Jr. (2012) Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687-714. https://doi.org/10.1146/annurev-biochem-061009-102430
  31. Wan, Y., Jiang, S., Lian, L. H., Bai, T., Cui, P. H., Sun, X. T., Jin, X. J., Wu, Y. L. and Nan, J. X. (2013) Betulinic acid and betulin ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro. Int. Immunopharmacol. 17, 184-190. https://doi.org/10.1016/j.intimp.2013.06.012
  32. Wu, Y. L., Zhang, Y. J., Yao, Y. L., Li, Z. M., Han, X., Lian, L. H., Zhao, Y. Q. and Nan, J. X. (2016) Cucurbitacin E ameliorates hepatic fibrosis in vivo and in vitro through activation of AMPK and blocking mTOR-dependent signaling pathway. Toxicol. Lett. 258, 147-158. https://doi.org/10.1016/j.toxlet.2016.06.2102
  33. Yao, Y. L., Han, X., Li, Z. M., Lian, L. H., Nan, J. X. and Wu, Y. L. (2017a) Acanthoic acid can partially prevent alcohol exposureinduced liver lipid deposition and inflammation. Front. Pharmacol. 8, 134.
  34. Yao, Y. L., Han, X., Song, J., Zhang, J., Li, Y. M., Lian, L. H., Wu, Y. L. and Nan, J. X. (2017b) Acanthoic acid protects against ethanol-induced liver injury: possible role of AMPK activation and IRAK4 inhibition. Toxicol. Lett. 281, 127-138. https://doi.org/10.1016/j.toxlet.2017.09.020
  35. You, M. and Arteel, G. E. (2019) Effect of ethanol on lipid metabolism. J. Hepatol. 70, 237-248. https://doi.org/10.1016/j.jhep.2018.10.037
  36. Zhang, Y., Jiang, M., Cui, B. W., Jin, C. H., Wu, Y. L., Shang. Y., Yang, H. X., Wu, M., Liu, J., Qiao, C. Y., Zhan, Z. Y., Ye, H., Zheng, G. H., Jin, Q., Lian, L. H. and Nan, J. X. (2020) P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: a new strategy towards macrophage-hepatocyte cross-talk. Br. J. Pharmacol. 177, 2793-2811. https://doi.org/10.1111/bph.15007