DOI QR코드

DOI QR Code

The Endoplasmic Reticulum Stress Response Mediates Shikonin-Induced Apoptosis of 5-Fluorouracil-Resistant Colorectal Cancer Cells

  • Received : 2021.07.14
  • Accepted : 2021.09.01
  • Published : 2022.05.01

Abstract

Resistance to chemotherapeutic drugs is a significant problem in the treatment of colorectal cancer, resulting in low response rates and decreased survival. Recent studies have shown that shikonin, a naphthoquinone derivative, promotes apoptosis in colon cancer cells and cisplatin-resistant ovarian cells, raising the possibility that this compound may be effective in drug-resistant colorectal cancer. The aim of this study was to characterize the molecular mechanisms underpinning shikonin-induced apoptosis, with a focus on endoplasmic reticulum (ER) stress, in a 5-fluorouracil-resistant colorectal cancer cell line, SNU-C5/5-FUR. Our results showed that shikonin significantly increased the proportion of sub-G1 cells and DNA fragmentation and that shikonin-induced apoptosis is mediated by mitochondrial Ca2+ accumulation. Shikonin treatment also increased the expression of ER-related proteins, such as glucose regulatory protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (PERK), phospho-eukaryotic initiation factor 2 (eIF2α), phospho-phosphoinositol-requiring protein-1 (IRE1), spliced X-box-binding protein-1 (XBP-1), cleaved caspase-12, and C/EBP-homologous protein (CHOP). In addition, siRNA-mediated knockdown of CHOP attenuated shikonin-induced apoptosis, as did the ER stress inhibitor TUDCA. These data suggest that ER stress is a key factor mediating the cytotoxic effect of shikonin in SNU-C5/5-FUR cells. Our findings provide an evidence for a mechanism in which ER stress leads to apoptosis in shikonin-treated SNU-C5/5-FUR cells. Our study provides evidence to support further investigations on shikonin as a therapeutic option for 5-fluorouracil-resistant colorectal cancer.

Keywords

Acknowledgement

This research was supported by the 2021 scientific promotion program funded by Jeju National University.

References

  1. Basseri, S. and Austin, R. C. (2012) Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem. Res. Int. 2012, 841362. https://doi.org/10.1155/2012/841362
  2. Coker-Gurkan, A., Arisan, E. D., Obakan, P., Akalin, K., Ozbey, U. and Palavan-Unsal, N. (2015) Purvalanol induces endoplasmic reticulum stress-mediated apoptosis and autophagy in a time-dependent manner in HCT116 colon cancer cells. Oncol. Rep. 33, 2761-2770. https://doi.org/10.3892/or.2015.3918
  3. Dastghaib, S., Kumar, P. S., Aftabi, S., Damera, G., Dalvand, A., Sepanjnia, A., Kiumarsi, M., Aghanoori, M. R., Sohal, S. S., Ande, S. R., Alizadeh, J., Mokarram, P., Ghavami, S., Sharma, P. and Zeki, A. A. (2021) Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol. 64, 29-38. https://doi.org/10.1165/rcmb.2019-0235TR
  4. Gotoh, T., Endo, M. and Oike, Y. (2011) Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int. J. Inflam. 2011, 259462.
  5. Han, C. T., Kim, M. J., Moon, S. H., Jeon, Y. R., Hwang, J. S., Nam, C., Park, C. W., Lee, S. H., Na, J. B., Park, C. S., Park, H. W., Lee, J. M., Jang, H. S., Park, S. H., Han, K. G., Choi, Y. W., Lee, H. Y. and Kang, J. K. (2015) Acute and 28-day subacute toxicity studies of hexane extracts of the roots of Lithospermum erythrorhizon in Sprague-Dawley rats. Toxicol. Res. 31, 403-414. https://doi.org/10.5487/TR.2015.31.4.403
  6. Han, X., Kang, K. A., Piao M. J., Zhen, A. X., Hyun, Y. J., Kim, H. M., Ryu, Y. S. and Hyun, J. W. (2019) Shikonin exerts cytotoxic effects in human colon cancers by inducing apoptotic cell death via the endoplasmic reticulum and mitochondria-mediated pathways. Biomol. Ther. (Seoul) 27, 41-47. https://doi.org/10.4062/biomolther.2018.047
  7. Hu, H., Tian, M., Ding, C. and Yu, S. (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9, 3083. https://doi.org/10.3389/fimmu.2018.03083
  8. Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183. https://doi.org/10.1038/cddis.2014.149
  9. Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H. and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res. 31,151-156. https://doi.org/10.5487/TR.2015.31.2.151
  10. Kim, J. O., Kwon, E. J., Song, D. W., Lee, J. S. and Kim, D. H. (2016) miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart. BMB Rep. 49, 208-213. https://doi.org/10.5483/BMBRep.2016.49.4.193
  11. Li, H., Korennykh, A. V., Behrman, S. L. and Walter, P. (2010) Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl. Acad. Sci. U.S.A. 107, 16113-16118. https://doi.org/10.1073/pnas.1010580107
  12. Mei, Y., Thompson, M. D., Cohen, R. A. and Tong, X. Y. (2013) Endoplasmic reticulum stress and related pathological processes. J. Pharmacol. Biomed. Anal. 1, 1000107.
  13. Meszaros, G., Szalay, B., Toldi, G., Kaposi, A., Vasarhelyi, B. and Treszl, A. (2012) Kinetic measurements using flow cytometry: new methods for monitoring intracellular processes. Assay Drug Dev. Technol. 10, 97-104. https://doi.org/10.1089/adt.2011.0368
  14. Mohelnikova-Duchonova, B., Melichar, B. and Soucek, P. (2014) FOLFOX/FOLFIRI pharmacogenetics: the call for a personalized approach in colorectal cancer therapy. World J. Gastroenterol. 20, 10316-10330. https://doi.org/10.3748/wjg.v20.i30.10316
  15. Piao, M. J., Ahn, M. J., Kang, K. A., Kim, K. C., Cha, J. W., Lee, N. H. and Hyun, J. W. (2015) Phloroglucinol enhances the repair of UVB radiation-induced DNA damage via promotion of the nucleotide excision repair system in vitro and in vivo. DNA Repair 28, 131-138. https://doi.org/10.1016/j.dnarep.2015.02.019
  16. Piao, M. J., Kang, K. A., Zhen, A. X., Fernando, P. D. S. M., Ahn, M. J., Koh, Y. S., Kang, H. K., Yi, J. M., Choi, Y. H. and Hyun, J. W. (2019) Particulate matter 2.5 mediates cutaneous cellular injury by inducing mitochondria-associated endoplasmic reticulum stress: protective effects of ginsenoside Rb1. Antioxidants 8, 383. https://doi.org/10.3390/antiox8090383
  17. Pluquet, O., Pourtier, A. and Abbadie, C. (2015) The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol. Cell Physiol. 308, 415-425.
  18. Prasad, R. G., Choi, Y. H. and Kim, G. Y. (2015) Shikonin isolated from Lithospermum erythrorhizon downregulates proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglial cells by suppressing crosstalk between reactive oxygen species and NF-κB. Biomol. Ther. (Seoul) 23, 110-118. https://doi.org/10.4062/biomolther.2015.006
  19. Ryoo, H. D. (2015) Drosophila as a model for unfolded protein response research. BMB Rep. 48, 445-453. https://doi.org/10.5483/BMBRep.2015.48.8.099
  20. Salvador-Gallego, R., Hoyer, M. J. and Voeltz, G. K. (2017) Snapshot: functions of endoplasmic reticulum membrane contact sites. Cell 171, 1224-1224.e1. https://doi.org/10.1016/j.cell.2017.11.005
  21. Shilnikova, K., Piao, M. J., Kang, K. A., Ryu, Y. S., Park, J. E., Hyun, Y. J., Zhen, A. X., Jeong, Y. J., Jung, U., Kim, I. G. and Hyun, J. W. (2018) Shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in cisplatin-resistant human ovarian cancer cells. Oncol. Lett. 15, 5417-5424. https://doi.org/10.3892/ol.2018.8065
  22. Xu, C., Bailly-Maitre, B. and Reed, J. C. (2005) Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656-2664. https://doi.org/10.1172/JCI26373
  23. Yan, F., Cao, S., Li, J., Dixon, B., Yu, X., Chen, J., Gu, C., Lin, W. and Chen, G. (2017) Pharmacological inhibition of PERK attenuates early brain injury after subarachnoid hemorrhage in rats through the activation of Akt. Mol. Neurobiol. 54, 1808-1817. https://doi.org/10.1007/s12035-016-9790-9
  24. Zhang, R., Chung, Y., Kim, H. S., Kim, D. H., Kim, H. S., Chang, W. Y. and Hyun, J. W. (2013) 20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol induces apoptosis via induction of endoplasmic reticulum stress in human colon cancer cells. Oncol. Rep. 29, 1365-1370. https://doi.org/10.3892/or.2013.2270
  25. Zhang, R., Piao, M. J., Kim, K. C., Kim, A. D., Choi, J. Y., Choi, J. and Hyun, J. W. (2012) Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int. J. Biochem. Cell Biol. 44, 224-232. https://doi.org/10.1016/j.biocel.2011.10.019