Acknowledgement
This work was supported by the KIST (Grant No. 2E30190-20-060) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2016R1A5A2012284)
References
- Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E. and Rutter, M. (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63-77. https://doi.org/10.1017/S0033291700028099
- Baranova, J., Dragunas, G., Botellho, M. C., Ayub, A. L. P., Bueno-Alves, R., Alencar, R. R., Papaiz, D. D., Sogayar, M. C., Ulrich, H. and Correa, R. G. (2021) Autism spectrum disorder: signaling pathways and prospective therapeutic targets. Cell. Mol. Neurobiol. 41, 619-649. https://doi.org/10.1007/s10571-020-00882-7
- Bey, A. L., Wang, X., Yan, H., Kim, N., Passman, R. L., Yang, Y., Cao, X., Towers, A. J., Hulbert, S. W., Duffney, L. J., Gaidis, E., Rodriguiz, R. M., Wetsel, W. C., Yin, H. H. and Jiang, Y. h. (2018) Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl. Psychiatry 8, 94. https://doi.org/10.1038/s41398-018-0142-6
- Bristot Silvestrin, R., Bambini-Junior, V., Galland, F., Daniele Bobermim, L., Quincozes-Santos, A., Torres Abib, R., Zanotto, C., Batassini, C., Brolese, G., Goncalves, C. A., Riesgo, R. and Gottfried, C. (2013) Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res. 1495, 52-60. https://doi.org/10.1016/j.brainres.2012.11.048
- Burgdorf, J., Moskal, J. R., Brudzynski, S. M. and Panksepp, J. (2013) Rats selectively bred for low levels of play-induced 50 kHz vocalizations as a model for autism spectrum disorders: a role for NMDA receptors. Behav. Brain Res. 251, 18-24. https://doi.org/10.1016/j.bbr.2013.04.022
- Cheroni, C., Caporale, N. and Testa, G. (2020) Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism 11, 69. https://doi.org/10.1186/s13229-020-00370-1
- Constantino, J. N. and Todd, R. D. (2003) Autistic traits in the general population: a twin study. Arch. Gen. Psychiatry 60, 524-530. https://doi.org/10.1001/archpsyc.60.5.524
- Conti, F. (1997) Localization of NMDA receptors in the cerebral cortex: a schematic overview. Braz. J. Med. Biol. Res. 30, 555-560. https://doi.org/10.1590/S0100-879X1997000500001
- Donner, N. C. and Lowry, C. A. (2013) Sex differences in anxiety and emotional behavior. Pflugers Arch. 465, 601-626. https://doi.org/10.1007/s00424-013-1271-7
- El-Kordi, A., Winkler, D., Hammerschmidt, K., Kastner, A., Krueger, D., Ronnenberg, A., Ritter, C., Jatho, J., Radyushkin, K., Bourgeron, T., Fischer, J., Brose, N. and Ehrenreich, H. (2013) Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav. Brain Res. 251, 41-49. https://doi.org/10.1016/j.bbr.2012.11.016
- Frye, C. A. and Llaneza, D. C. (2010) Corticosteroid and neurosteroid dysregulation in an animal model of autism, BTBR mice. Physiol. Behav. 100, 264-267. https://doi.org/10.1016/j.physbeh.2010.03.005
- Gandhi, T. and Lee, C. C. (2021) Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders. Front. Cell. Neurosci. 14, 592710. https://doi.org/10.3389/fncel.2020.592710
- Goebel, D. J. and Poosch, M. S. (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Mol. Brain Res. 69, 164-170. https://doi.org/10.1016/S0169-328X(99)00100-X
- Goncalves, J., Violante, I. R., Sereno, J., Leitao, R. A., Cai, Y., Abrunhosa, A., Silva, A. P., Silva, A. J. and Castelo-Branco, M. (2017) Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes. Mol. Autism 8, 47. https://doi.org/10.1186/s13229-017-0166-4
- Hines, R. M., Wu, L., Hines, D. J., Steenland, H., Mansour, S., Dahlhaus, R., Singaraja, R. R., Cao, X., Sammler, E., Hormuzdi, S. G., Zhuo, M. and El-Husseini, A. (2008) Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J. Neurosci. 28, 6055-6067. https://doi.org/10.1523/JNEUROSCI.0032-08.2008
- Horder, J., Petrinovic, M. M., Mendez, M. A., Bruns, A., Takumi, T., Spooren, W., Barker, G. J., Kunnecke, B. and Murphy, D. G. (2018) Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 8, 106. https://doi.org/10.1038/s41398-018-0155-1
- Hughes, H. K., Mills Ko, E., Rose, D. and Ashwood, P. (2018) Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Front. Cell. Neurosci. 12, 405. https://doi.org/10.3389/fncel.2018.00405
- Iossifov, I., O'Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., Sullivan, C. A., Walker, M. F., Waqar, Z., Wei, L., Willsey, A. J., Yamrom, B., Lee, Y. H., Grabowska, E., Dalkic, E., Wang, Z., Marks, S., Andrews, P., Leotta, A., Kendall, J., Hakker, I., Rosenbaum, J., Ma, B., Rodgers, L., Troge, J., Narzisi, G., Yoon, S., Schatz, M. C., Ye, K., McCombie, W. R., Shendure, J., Eichler, E. E., State, M. W. and Wigler, M. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216-221. https://doi.org/10.1038/nature13908
- Jeon, S. J., Gonzales, E. L., Mabunga, D. F. N., Valencia, S. T., Kim, D. G., Kim, Y., Adil, K. J. L., Shin, D., Park, D. and Shin, C. Y. (2018) Sex-specific behavioral features of rodent models of autism spectrum disorder. Exp. Neurobiol. 27, 321-343. https://doi.org/10.5607/en.2018.27.5.321
- Kalueff, A. V., Stewart, A. M., Song, C., Berridge, K. C., Graybiel, A. M. and Fentress, J. C. (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci. 17, 45-59. https://doi.org/10.1038/nrn.2015.8
- Kim, D. G., Gonzales, E. L., Kim, S., Kim, Y., Adil, K. J., Jeon, S. J., Cho, K. S., Kwon, K. J. and Shin, C. Y. (2019) Social interaction test in home cage as a novel and ethological measure of social behavior in mice. Exp. Neurobiol. 28, 247. https://doi.org/10.5607/en.2019.28.2.247
- Kim, J. W., Park, K., Kang, R. J., Gonzales, E. L. T., Kim, D. G., Oh, H. A., Seung, H., Ko, M. J., Kwon, K. J., Kim, K. C., Lee, S. H., Chung, C. and Shin, C. Y. (2018) Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 44, 314-323. https://doi.org/10.1038/s41386-018-0098-5
- Kim, K. C., Gonzales, E. L., Lazaro, M. T., Choi, C. S., Bahn, G. H., Yoo, H. J. and Shin, C. Y. (2016) Clinical and neurobiological relevance of current animal models of autism spectrum disorders. Biomol. Ther. (Seoul) 24, 207-243. https://doi.org/10.4062/biomolther.2016.061
- Law, A. J., Weickert, C. S., Webster, M. J., Herman, M. M., Kleinman, J. E. and Harrison, P. J. (2003) Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. Eur. J. Neurosci. 18, 1197-1205. https://doi.org/10.1046/j.1460-9568.2003.02850.x
- Lazaro, M. T., Taxidis, J., Shuman, T., Bachmutsky, I., Ikrar, T., Santos, R., Marcello, G. M., Mylavarapu, A., Chandra, S., Foreman, A., Goli, R., Tran, D., Sharma, N., Azhdam, M., Dong, H., Choe, K. Y., Penagarikano, O., Masmanidis, S. C., Racz, B., Xu, X., Geschwind, D. H. and Golshani, P. (2019) Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep. 27, 2567-2578.e6. https://doi.org/10.1016/j.celrep.2019.05.006
- Lee, E., Lee, J. and Kim, E. (2017) Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry 81, 838-847. https://doi.org/10.1016/j.biopsych.2016.05.011
- Lopatina, O. L., Komleva, Y. K., Gorina, Y. V., Olovyannikova, R. Y., Trufanova, L. V., Hashimoto, T., Takahashi, T., Kikuchi, M., Minabe, Y., Higashida, H. and Salmina, A. B. (2018) Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 72, 1-11. https://doi.org/10.1016/j.npep.2018.09.003
- Masi, A., DeMayo, M. M., Glozier, N. and Guastella, A. J. (2017) An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci. Bull. 33, 183-193. https://doi.org/10.1007/s12264-017-0100-y
- Mohammadi, S., Asadi-Shekaari, M., Basiri, M., Parvan, M., Shabani, M. and Nozari, M. (2020) Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology 237, 199-208. https://doi.org/10.1007/s00213-019-05357-2
- Morgan, D., Munireddy, S., Alamed, J., DeLeon, J., Diamond, D. M., Bickford, P., Hutton, M., Lewis, J., McGowan, E. and Gordon, M. N. (2008) Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J. Alzheimers Dis. 15, 605-614. https://doi.org/10.3233/JAD-2008-15407
- Patterson, P. H. (2011) Modeling autistic features in animals. Pediatr. Res. 69, 34R-40R. https://doi.org/10.1203/PDR.0b013e318212b80f
- Pitkanen, A., Schwartzkroin, P. A. and Moshe, S. L. (2005) Models of Seizures and Epilepsy. Academic Press.
- Rubenstein, J. L. and Merzenich, M. M. (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255-267. https://doi.org/10.1034/j.1601-183X.2003.00037.x
- Saitow, F., Takumi, T. and Suzuki, H. (2020) Change in serotonergic modulation contributes to the synaptic imbalance of neuronal circuit at the prefrontal cortex in the 15q11-13 duplication mouse model of autism. Neuropharmacology 165, 107931. https://doi.org/10.1016/j.neuropharm.2019.107931
- Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., Carriero, N. J., Meyer, K. A., Bilguvar, K., Mane, S. M., Sestan, N., Lifton, R. P., Gunel, M., Roeder, K., Geschwind, D. H., Devlin, B. and State, M. W. (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237-241. https://doi.org/10.1038/nature10945
- Schroeder, J. C., Reim, D., Boeckers, T. M. and Schmeisser, M. J. (2015) Genetic animal models for autism spectrum disorder. In Social Behavior from Rodents to Humans, pp. 311-324. Springer.
- Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y. H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimaki, T., Ledbetter, D., Gregersen, P. K., Bregman, J., Sutcliffe, J. S., Jobanputra, V., Chung, W., Warburton, D., King, M. C., Skuse, D., Geschwind, D. H., Gilliam, T. C., Ye, K. and Wigler, M. (2007) Strong association of de novo copy number mutations with autism. Science 316, 445-449. https://doi.org/10.1126/science.1138659
- Smalley, S. L. (1997) Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am. J. Hum. Genet. 60, 1276-1282. https://doi.org/10.1086/515485
- Stafstrom, C. E. and Sasaki-Adams, D. M. (2003) NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res. 53, 129-137. https://doi.org/10.1016/S0920-1211(02)00258-9
- Uzunova, G., Pallanti, S. and Hollander, E. (2016) Excitatory/inhibitory imbalance in autism spectrum disorders: implications for interventions and therapeutics. World J. Biol. Psychiatry 17, 174-186. https://doi.org/10.3109/15622975.2015.1085597
- Werling, D. M. and Geschwind, D. H. (2013) Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146-153. https://doi.org/10.1097/WCO.0b013e32835ee548
- Zerbi, V., Markicevic, M., Gasparini, F., Schroeter, A., Rudin, M. and Wenderoth, N. (2019) Inhibiting mGluR5 activity by AFQ056/Mavoglurant rescues circuit-specific functional connectivity in Fmr1 knockout mice. Neuroimage 191, 392-402. https://doi.org/10.1016/j.neuroimage.2019.02.051