과제정보
본 연구는 환경부 국립환경과학원 제2기와 제3기 국민환경보건기초조사 자료를 제공받았으며(제2기: NIER-2012-00-01-944, 제3기: NIER-2017-01-01-001), 2021년 교육부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다 (NRF-2021R1F1A1063967).
참고문헌
- Agency for Toxic Substances and Disease Registry. Public health statement for pyrethrins and pyrethroids. Available: https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=785&toxid=153 [accessed 12 December 2021].
- Choi YH, Kang MS, Huh DA, Chae WR, Moon KW. Priority setting for management of hazardous biocides in Korea using chemical ranking and scoring method. Int J Environ Res Public Health. 2020; 17(6): 1970. https://doi.org/10.3390/ijerph17061970
- U.S. Environmental Protection Agency. Pyrethroids and pyrethrins. Available: https://19january2017snapshot.epa.gov/ingredients-used-pesticide-products/pyrethrins-and-pyrethroids_.html [accessed 11 August 2021].
- Research and Markets. Research and markets: global insecticides market (type, crop type and geography) - size, share, global trends, company profiles, analysis, segmentation and forecast, 2013 - 2020. Available: https://www.businesswire.com/news/home/20141203006466/en/Research-and-Markets-Global-Insecticides-Market-Type-Crop-Type-and-Geography---Size-Share-Global-Trends-Company-Profiles-Analysis-Segmentation-and-Forecast-2013---2020 [accessed 25 October 2021].
- Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, et al. Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999-2002. Environ Health Perspect. 2010; 118(6): 742-748. https://doi.org/10.1289/ehp.0901275
- Health Canada. Second report on human biomonitoring of environmental chemicals in Canada: results of the Canadian Health Measures Survey Cycle 2 (2009-2011). Available: https://www.canada.ca/en/health-canada/services/environmental-workplacehealth/reports-publications/environmental-contaminants/secondreport-human-biomonitoring-environmental-chemicals-canadahealth-canada-2013.html [accessed 15 September 2021].
- Jain RB. Variability in the levels of 3-phenoxybenzoic acid by age, gender, and race/ethnicity for the period of 2001-2002 versus 2009-2010 and its association with thyroid function among general US population. Environ Sci Pollut Res Int. 2016; 23(7): 6934-6939. https://doi.org/10.1007/s11356-015-5954-9
- Choi W, Kim S, Baek YW, Choi K, Lee K, Kim S, et al. Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012- 2014). Int J Hyg Environ Health. 2017; 220(2 Pt A): 29-35. https://doi.org/10.1016/j.ijheh.2016.10.002
- Park C, Hwang M, Kim H, Ryu S, Lee K, Choi K, et al. Early snapshot on exposure to environmental chemicals among Korean adults-results of the first Korean National Environmental Health Survey (2009-2011). Int J Hyg Environ Health. 2016; 219(4-5): 398-404. https://doi.org/10.1016/j.ijheh.2016.04.001
- Jung SK, Choi W, Kim SY, Hong S, Jeon HL, Joo Y, et al. Profile of environmental chemicals in the Korean population-results of the Korean National Environmental Health Survey (KoNEHS) Cycle 3, 2015-2017. Int J Environ Res Public Health. 2022; 19(2): 626. https://doi.org/10.3390/ijerph19020626
- Xu H, Mao Y, Xu B. Association between pyrethroid pesticide exposure and hearing loss in adolescents. Environ Res. 2020; 187: 109640. https://doi.org/10.1016/j.envres.2020.109640
- Ye X, Pan W, Zhao Y, Zhao S, Zhu Y, Liu W, et al. Association of pyrethroids exposure with onset of puberty in Chinese girls. Environ Pollut. 2017; 227: 606-612. https://doi.org/10.1016/j.envpol.2017.04.035
- Zuo L, Chen L, Chen X, Liu M, Chen H, Hao G. Pyrethroids exposure induces obesity and cardiometabolic diseases in a sex-different manner. Chemosphere. 2022; 291(Pt 2): 132935. https://doi.org/10.1016/j.chemosphere.2021.132935
- Hansen MR, Jors E, Lander F, Condarco G, Schlunssen V. Is cumulated pyrethroid exposure associated with prediabetes? A crosssectional study. J Agromedicine. 2014; 19(4): 417-426. https://doi.org/10.1080/1059924X.2014.945708
- Narendra M, Kavitha G, Helah Kiranmai A, Raghava Rao N, Varadacharyulu NC. Chronic exposure to pyrethroid-based allethrin and prallethrin mosquito repellents alters plasma biochemical profile. Chemosphere. 2008; 73: 360-364. https://doi.org/10.1016/j.chemosphere.2008.05.070
- Veerappan M, Hwang I, Pandurangan M. Effect of cypermethrin, carbendazim and their combination on male albino rat serum. Int J Exp Pathol. 2012; 93: 361-369. https://doi.org/10.1111/j.1365-2613.2012.00828.x
- Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, Park Y. Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food Chem Toxicol. 2017; 108(Pt A): 161-170. https://doi.org/10.1016/j.fct.2017.07.053
- Eraslan G, Kanbur M, Silici S, Altinordulu S, Karabacak M. Effecs of cypermethrin on some biochemical changes in rats: the protective role of propolis. Exp Anim. 2008; 57(5): 453-460. https://doi.org/10.1538/expanim.57.453
- Manna S, Bhattacharyya D, Mandal TK, Das S. Repeated dose toxicity of deltamethrin in rats. Indian J Pharmacol. 2005; 37(3): 160-164. https://doi.org/10.4103/0253-7613.16212
- Muthuviveganandavel V, Muthuraman P, Muthu S, Srikumar K. A study on low dose cypermethrin induced histopathology, lipid peroxidation and marker enzyme changes in male rat. Pestic Biochem Physiol. 2008; 91(1): 12-16. https://doi.org/10.1016/j.pestbp.2007.11.010
- Wang J, Zhu Y, Cai X, Yu J, Yang X, Cheng J. Abnormal glucose regulation in pyrethroid pesticide factory workers. Chemosphere. 2011; 82(7): 1080-1082. https://doi.org/10.1016/j.chemosphere.2010.10.065
- Leso V, Capitanelli I, Lops EA, Ricciardi W, Iavicoli I. Occupational chemical exposure and diabetes mellitus risk. Toxicol Ind Health. 2017; 33(3): 222-249. https://doi.org/10.1177/0748233715624594
- Park J, Park SK, Choi YH. Environmental pyrethroid exposure and diabetes in U.S. adults. Environ Res. 2019; 172: 399-407. https://doi.org/10.1016/j.envres.2018.12.043
- National Institute of Environmental Research. Manual for analysis of environmental pollutants in biological samples (organic chemicals). Incheon: National Institute of Environmental Research; 2006 Dec. Report No.: GOVP1200717001. 302 p.
- Lee I, Park YJ, Kim MJ, Kim S, Choi S, Park J, et al. Associations of urinary concentrations of phthalate metabolites, bisphenol A, and parabens with obesity and diabetes mellitus in a Korean adult population: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Environ Int. 2021; 146: 106227. https://doi.org/10.1016/j.envint.2020.106227
- Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007; 29: 115-128. https://doi.org/10.1093/epirev/mxm008
- Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007; 298(22): 2654-2664. https://doi.org/10.1001/jama.298.22.2654
- Hwang MY, Ryu JM, Kwon YM, Hong SY, Park CH. Seasonal variations of exposure to environmental chemicals: implication from the Korean National Environmental Health Survey (2012-2014). J Environ Health Sci. 2018; 44(6): 572-580.
- Montgomery MP, Kamel F, Saldana TM, Alavanja MC, Sandler DP. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am J Epidemiol. 2008; 167(10): 1235-1246. https://doi.org/10.1093/aje/kwn028
- Starling AP, Umbach DM, Kamel F, Long S, Sandler DP, Hoppin JA. Pesticide use and incident diabetes among wives of farmers in the Agricultural Health Study. Occup Environ Med. 2014; 71(9): 629-635. https://doi.org/10.1136/oemed-2013-101659
- Hocine L, Merzouk H, Merzouk SA, Ghorzi H, Youbi M, Narce M. The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns. Pestic Biochem Physiol. 2016; 134: 49-54. https://doi.org/10.1016/j.pestbp.2016.04.007
- Xiao X, Qi W, Clark JM, Park Y. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stressmediated mechanisms in 3T3-L1 adipocytes. Food Chem Toxicol. 2017; 109(Pt 1): 123-129. https://doi.org/10.1016/j.fct.2017.08.049
- Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, et al. Glucose metabolism and catecholamines. Crit Care Med. 2007; 35(9 Suppl): S508-S518. https://doi.org/10.1097/01.CCM.0000278047.06965.20
- Qi D, Rodrigues B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab. 2007; 292(3): E654-E667. https://doi.org/10.1152/ajpendo.00453.2006
- de Boer SF, van der Gugten J, Slangen JL, Hijzen TH. Changes in plasma corticosterone and catecholamine contents induced by low doses of deltamethrin in rats. Toxicology. 1988; 49(2-3): 263-270. https://doi.org/10.1016/0300-483X(88)90007-8
- Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004; 24(5): 816-823. https://doi.org/10.1161/01.ATV.0000122852.22604.78
- Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003; 52(1): 1-8. https://doi.org/10.2337/diabetes.52.1.1
- Hwang M, Lee Y, Choi K, Park C. Urinary 3-phenoxybenzoic acid levels and the association with thyroid hormones in adults: Korean National Environmental Health Survey 2012-2014. Sci Total Environ. 2019; 696: 133920. https://doi.org/10.1016/j.scitotenv.2019.133920
- Food and Agriculture Organization of the United Nations (FAO). Food Outlook - Biannual Report on Global Food Markets. Rome: FAO; 2020. p.127.
- Hu P, Su W, Vinturache A, Gu H, Cai C, Lu M, et al. Urinary 3-phenoxybenzoic acid (3-PBA) concentration and pulmonary function in children: a National Health and Nutrition Examination Survey (NHANES) 2007-2012 analysis. Environ Pollut. 2021; 270: 116178. https://doi.org/10.1016/j.envpol.2020.116178
- Ueyama J, Hirosawa N, Mochizuki A, Kimata A, Kamijima M, Kondo T, et al. Toxicokinetics of pyrethroid metabolites in male and female rats. Environ Toxicol Pharmacol. 2010; 30(1): 88-91. https://doi.org/10.1016/j.etap.2010.03.017
- Tyler CR, Beresford N, van der Woning M, Sumpter JP, Tchorpe K. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem. 2000; 19(4): 801-809. https://doi.org/10.1897/1551-5028(2000)019<0801:MAEDOP>2.3.CO;2
- Song G, Moreau M, Efremenko A, Lake BG, Wu H, Bruckner JV, et al. Evaluation of age-related pyrethroid pharmacokinetic differences in rats: physiologically-based pharmacokinetic model development using in vitro data and in vitro to in vivo extrapolation. Toxicol Sci. 2019; 169(2): 365-379. https://doi.org/10.1093/toxsci/kfz042
- Sheets LP. A consideration of age-dependent differences in susceptibility to organophosphorus and pyrethroid insecticides. Neurotoxicology. 2000; 21(1-2): 57-63.
- Li AJ, Martinez-Moral MP, Kannan K. Temporal variability in urinary pesticide concentrations in repeated-spot and first-morningvoid samples and its association with oxidative stress in healthy individuals. Environ Int. 2019; 130: 104904. https://doi.org/10.1016/j.envint.2019.104904