DOI QR코드

DOI QR Code

Moderating Effect of Online Shopping Experience on Adoption of e-Governance in Rural India

  • Swapnil Undale (School of Management (PG), Dr. Vishwanath Karad MIT World Peace University) ;
  • Harshali Patil (School of Management (PG), Dr. Vishwanath Karad MIT World Peace University)
  • Received : 2021.06.10
  • Accepted : 2021.12.27
  • Published : 2022.03.31

Abstract

Technology acceptance is one of the most popular research areas. Rapid developments in technology are making human life more comfortable. However, still most of the rural area has been deprived of benefits of technological advancement. Seventy percent population of India resides in rural area. Leveraging the improved penetration of the internet; mobile friendly population in rural India has been increasingly shopping online in the last few years. e-Governance is one of the important vehicles to provide efficient services to the citizens by Governments. One major obstacle is acceptance of e-Governance platforms by the citizens. Considering the increasing trend of using e-Commerce in rural area, this paper attempts to investigate moderating effect of online shopping experience on intention to use e-Governance portals. We surveyed 365 villagers across Maharashtra: one of the leading states in India. The result confirmed online shopping experience moderates the relationship between: 'perceived security & privacy' and 'attitude'; 'perceived security & privacy' and 'intention to use'; 'Perceived usefulness' and 'attitude'; and, 'attitude' and 'intention to use'. In this study definition of moderating variable 'experience' is unique and different than most of the popular studies. We defined experience as: 'prior use of any application of technology similar to the target application of technology'. Whereas prior studies considered experience as prior experience with target application of the technology.

Keywords

References

  1. Ahmad, M. O., Markkula, J., and Oivo, M. (2013). Factors affecting e-government adoption in Pakistan: A citizen's perspective. Transforming Government: People, Process and Policy, 7(2), 225-239.  https://doi.org/10.1108/17506161311325378
  2. Ahmad, S. Z., and Khalid, K. (2017). The adoption of M-government services from the user's perspectives: Empirical evidence from the United Arab Emirates. International Journal of Information Management, 37, 367-379. doi: 10.1016/j.ijinfomgt.2017.03.008. 
  3. Ajzen, I., and Fishbein, M. (1980). Understanding attitudes and predicting social behavior: Attitudes, intentions, and perceived behavioral control. Englewood Cliffs, NJ: Prentice Hall. 
  4. Al Hujran, O., Aloudat, A., and Altarawneh, I. (2013). Factors influencing citizen adoption of e government in developing countries: The case of Jordan. International Journal of Technology and Human Interaction, 9(2), 1-19.  https://doi.org/10.4018/jthi.2013040101
  5. AlBar, A. M., and Hoque, M. R. (2019). Patient acceptance of e-Health services in Saudi Arabia: An integrative perspective. Telemedicine and e-Health, 25(9), 847-852. doi: 10.1089/tmj.2018.0107. 
  6. Alhashmi, S. S., Salloum, S. A., and Abdallah, S. (2019). Critical success factors for implementing artificial intelligence (AI) projects in Dubai Government United Arab Emirates (UAE) Health Sector: Applying the Extended Technology Acceptance Model (TAM). International Conference on Advanced Intelligent Systems and Informatics. 
  7. All Reports Contribution of Smartphones to Digital Governance in India (2021, March). Retrieved from India Cellular & Electronics Association, https://icea.org.in/wp-content/uploads/2020/07/Contribution-of-Smartphones-to-Digital-Governancein-India-09072020.pdf'. 
  8. Al-Shafi, S., Weerakkody, V., and Janssen, M. (2009). Investigating the Adoption of eGovernment Services in Qatar Using the UTAUT Model. AMCIS , 260. 
  9. Alzahrani, L., Al-Karaghouli, W., and Weerakkody, V. (2018). Investigating the impact of citizens' trust toward the successful adoption of e-Government: A multigroup analysis of gender, age, and internet experience. Information Systems Management, 35(2), 124-146.  https://doi.org/10.1080/10580530.2018.1440730
  10. Ayyash, M. M., Ahmad, K., and Singh, D. (2013). Investigating the effect of information systems factors on trust in e-Government initiative adoption in palestinian public sector. Research Journal of Applied Sciences, Engineering and Technology, 5(15), 3865-3875.  https://doi.org/10.19026/rjaset.5.4447
  11. Bagozzi, R. (1981). Attitudes, intentions, and behavi or: A test of some key hypotheses. Journal of Personal ity and Social Psychology, 41(4), 607-627. doi: 10.1037/0022-3514.41.4.607. 
  12. Bamufleh, D., Alshamari, A. S., Alsobhi, A. S., Ezzi, H. H., and Alruhaili, W. S. (2021). Exploring public attitudes toward e-Government health applications used during the COVID-19 pandemic: Evidence from Saudi Arabia. Computer and Information Science, 14(3). Retrieved from https://doi.org/10.5539/cis.v14n3p1. 
  13. Beldad, A., Geest, T. v., Jong, M. d., and Steehouder, M. (2012). A cue or two and I'll trust you: Determinan ts of trust in government organizations in terms of their processing and usage of citizens' personal information disclosed online. Government Information Quarterly, 29(1), 41-49. doi: 10.1016/j.giq.2011.05.003. 
  14. Bentler, P. M., and Speckart, G. (1979). Models of attitude-behavior relations. Psychological Review, 86(5), 452-464.  https://doi.org/10.1037/0033-295X.86.5.452
  15. Campo, K., and Breugelmans, E. (2015, August). Buying groceries in brick and click stores: Category allocation decisions and the moderating effect of online buying experience. Journal of Interactive Marketing, 31, 63-78. doi: 10.1016/j.intmar.2015.04.001. 
  16. Carter, L., and Belanger, F. (2005). The utilization of e-Government services: Citizen trust, innovation and acceptance factors. Information Systems Journal, 15(1), 5-25. doi: 10.1111/j.1365-2575.2005.00183.x 
  17. Cegarra-Navarro, J. -G., Martinez-Caro, E., Moreno-Cegarra, J. -L., and Eldridge, S. (2014). The value of extended framework of TAM in the electronic government. The Electronic Journal of Knowledge Management, 12(1), 14-24. 
  18. CencusInfo India 2011. (n.d.). Retrieved September 3, 2021, from Office of the Registrar General & Census Commissioner, India: http://www.dataforall.org/dashboard/censusinfoindia_pca/. 
  19. Chawla, D., and Joshi, H. (2018). The moderating effect of demographic variabls on mobile banking adoption: An empirical investigation. Global Business Review, 19(3S), 90S-113S.  https://doi.org/10.1177/0972150918757883
  20. Chin, S. -L., and Goh, Y. -N. (2017). Consumer purchase intention toward online grocery shopping: View from Malaysia. Global Business and Management Research: An International Journal, 9(4), 221-238. 
  21. Choi, H., Kim, Y., and Kim, J. (2010). An acceptance model for an internet protocol television service in Korea with prior experience as a moderator. The Service Industries Journal, 30(11), 1883-1901.  https://doi.org/10.1080/02642060802627178
  22. Colesca, S. E. (2009). Increasing e-trust: A solution to minimize risk in e-Government adoption. Journal of Applied Quantitative Methods, 4(1), 31-44. 
  23. Dashboard: Aaple Sarkar. (2021, October 17). Retrieved October 17, 2021, from Aaple Sarkar Web site: https://aaplesarkar.mahaonline.gov.in/en/CommonForm/DashBoard_Count. 
  24. Davis, F. D. (1989, September). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.  https://doi.org/10.2307/249008
  25. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.  https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  26. Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., and Clement, M. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211-230.  https://doi.org/10.1016/j.giq.2017.03.001
  27. Eagly, A., and Chaiken, S. (1993). The Psychology of Attitudes. (5 ed., Vol. 12). John Wiley & Sons, Inc. doi: 10.1002/mar.4220120509. 
  28. Evans, D., and Yen, D. C. (2006). e-Government: evolving relationship of citizens and government, domestic, and international development. Government Information Quarterly, 23(2), 207-235.  https://doi.org/10.1016/j.giq.2005.11.004
  29. Fazio, R. H., and Zanna, M. P. (1978). Attitudinal qualities relating to the strength of the attitude-behavior relationship. Journal of Experimental Social Psychology, 14(4), 398-408. doi: 10.1016/0022-1031(78)90035-5. 
  30. Fishbein, M., and Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An introduction to theory and research. Addison-Wesley. 
  31. Gao, B., and Huang, L. (2019). Understanding interactive user behavior in smart media content service: An integration of TAM and smart service belief factors. Heliyon, 5(12), doi: 10.1016/j.heliyon.2019.e02983. 
  32. Gefen, D. (2003). TAM or just plain habit: A look at experienced online shoppers. Journal of End User Computing, 15(3), 1-13.  https://doi.org/10.4018/joeuc.2003070101
  33. Hair, J. F., Hult, G. T., Ringle, C. M., and Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Los Angeles: SAGE Publications Inc.
  34. Henseler, J., Hubona, G., and Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 118(1), 2-20. doi: 10.1108/IMDS-09- 2015-0382. 
  35. Henseler, J., Ringle, C. M., and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431. doi: 10.1108/IMR-09-2014-0304. 
  36. HindRise Social Welfare Foundation. (2021, March 30). Retrieved from https://hindrise.org/villageecommerce. 
  37. Hoque, R. M., Bao, Y., and Sorwar, G. (2016). Investigating factors influencing the adoption of e-Health in developing countries: A patient's perspective. Informatics for Health and Social Care, 42(1), 1-17. Retrieved from https://doi.org/10.3109/17538157.2015.1075541. 
  38. Hu, L. t., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi: 10.1080/10705519909540118. 
  39. Karahanna, E., Straub, D. W., and Chervany, N. L. (1999, June). Information technology adoption across time: A cross-sectional comparison of preadoption and post-adoption beliefs. MIS Quarterly, 23(2), 183-213. doi: 10.2307/249751 
  40. Karunasena, K., and Deng, H. (2012). A citizen-oriented approach for evaluating the performance of e-Government in Sri Lanka. International Journal of Electronic Government Research, 44-63. doi: 10.4018/jegr.2012010103. 
  41. Kim, J., and Lee, K. S. -S. (2020, June 19). Conceptual model to predict Filipino teachers' adoption of ICT-based instruction in class: Using the UTAUT model. Asia Pacific Journal of Education, 1-15. doi: 10.1080/02188791.2020.1776213. 
  42. Kim, T. T., Karatepe, O. M., Lee, G., and Demiral, H. (2018). Do gender and prior experience moderate the factors influencing attitude toward using social media for festival attendance? Sustainability, 10(3509), 1-19.  https://doi.org/10.3390/su10020001
  43. Kim, J., and Wang, J. (2020, December). Examining factors that determine the use of social media privacy settings: Focused on the mediating effect of implementation intention to use privacy settings. Asia Pacific Journal of Information Systems, 30(4), 919-945. doi: 10.14329/apjis.2020.30.4.919. 
  44. Kumar, V., Mukerji, B., Butt, I., and Persaud , A. (2007). Factors for successful e-Government adoption: A conceptual framework. The Electronic Journal of e-Government, 5(1), 63-76. 
  45. Lallmahamood, M. (2007, December). An examination of individual's perceived security and privacy of the internet in Malaysia and the influence of this on their intention to use e-commerce: Using an extension of the technology acceptance model. Journal of Internet Banking and Commerce, 12(3), 1-26. 
  46. Lim, S., Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., ... and Choolanif, M. (2011). A study on Singaporean women's acceptance of using A study on Singaporean women's acceptance of using. International Journal of Medical Informatics, 80(12), 189-202.  https://doi.org/10.1016/j.ijmedinf.2011.08.007
  47. Lim, W. M., and Ting, D. H. (2012). E-shopping: an analysis of the technology acceptance model. Modern Applied Science, 6(4). doi: 10.5539/mas.v6n4p49. 
  48. Lu, Y., Cao, Y., Wang, B., and Yang, S. (2011, January). A study on factors that affects users' behavioral intention to transfer usage from the offline to online channel. Computers in Human Behavior, 27(1), 355-364. doi: 10.1016/j.chb.2010.08.013. 
  49. Ma, L. (2021). Understanding non-adopters' intention to use internet pharmacy: Revisiting the roles of trustworthiness, perceived risk and consumer traits. Journal of Engineering and Technology Management, 59. Retrieved from https://doi.org/10.1016/j.jengtecman.2021.101613. 
  50. Miller, J., and Khera, O. (2010). Digital library adoption and the technology acceptance model: A cross-country analysis. The Electronic Journal on Information Systems in Developing Countries, 40(6), 1-19.  https://doi.org/10.1002/j.1681-4835.2010.tb00288.x
  51. Moryson, H., and Moeser, G. (2016). Consumer adoption of cloud computing services in Germany: Investigation of moderating effects by applying an UTAUT model. International Journal of Marketing Studies, 8(1), 14-32.  https://doi.org/10.5539/ijms.v8n1p14
  52. Muir, A., and Oppenheim, C. (2002). National information policy developments worldwide I: electronic government. Journal of Information Science, 28(3), 173-186.  https://doi.org/10.1177/016555150202800301
  53. Norris, D. F., Fletcher, P. D., and Holden, S. H. (2001). Is your local government plugged in? Highlights of the 2000 electronic government survey. International City/County Management Association (ICMA) and Public Technology, Inc. (PTI), 1-12. 
  54. Nunnally, J., and Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. 
  55. Overview of PMGDISHA. (2021, March 30). Retrieved from Ministry of Electronics & Information Technology: https://www.pmgdisha.in/about-pmgdisha. 
  56. Pramatari, K., and Theotokis, A. (2009). Consumer acceptance of RFID-enabled services: A model of multiple attitudes, perceived system characteristics and individual traits. European Journal of Information Systems, 18(6), 541-552.  https://doi.org/10.1057/ejis.2009.40
  57. Ramirez-Correa, P. E., Rondan-Cataluna, F. J., and Arenas-Gaitan, J. (2014, September). An empirical analysis of mobile Internet acceptance in Chile. Information Research, 19(3), Retrieved from http://InformationR.net/ir/19-3/paper635.html. 
  58. Rana, N., Dwivedia, Y., Williams, M., and Weerakkody, V. (2016, June). Adoption of online public grievance redressal system in India: Toward developing a unified view. Computers in Human Behavior, 59, 265-282. doi: 10.1016/j.chb.2016.02.019 
  59. Ray, S., and Mukherjee, A. (2007). Development of a framework towards successful implementation of e-Governance initiatives in health sector in India. International Journal of Health Care Quality Assurance, 20(6), 464-483.  https://doi.org/10.1108/09526860710819413
  60. Reddick, C. G. (2006). Information resource managers and e-Government effectiveness: A survey of Texas state agencies. Government Information Quarterly, 23(2), 249-266.  https://doi.org/10.1016/j.giq.2005.11.006
  61. Regan, D. T., and Fazio, R. (1977). On the consistency between attitudes and behavior: Look to the method of attitude formation. Journal of Experimental Social Psychology, 13, 28-45.  https://doi.org/10.1016/0022-1031(77)90011-7
  62. Rehman, M., Esichaikul, V., and Kamal, M. (2012). Factors influencing e-Government adoption in Pakistan. Transforming Government: People, Process and Policy, 6(3), 258-282.  https://doi.org/10.1108/17506161211251263
  63. Robinson, T. (2000, April 17). Internet banking: still not a perfect marriage. informationweek.com, pp. 104-106. 
  64. Rural eCommerce: The untapped potential. (2018). Ernst & Young LLP. Retrieved from https://invest-india-revamp-static-files.s3.ap-south-1.amazonaws.com/s3fs-public/2019-03/ey-rural-ecommerce-the-untapped-potential.pdf. 
  65. Syamsudin, Meiyanti, R., Satria, D., Wahyuni, R., and Sensuse, D. I. (2018). Exploring factors influence behavioral intention to use e-Government services using unified theory of acceptance and use of technology 2 (UTAUT2). IEEE, (pp. 237-242). Yogyakarta-Indonesia. doi: 10.1109/ISRITI.2018.8864474. 
  66. Saw, S. -L., Goh, Y. -N., and Isa, S. M. (2015). Exploring consumers' intention toward online hotel reservations: Insights from Malaysia. Problems and Perspectives in Management, 13(2), 249-257. 
  67. Shareef, M. A., Archer, N., Kumar, V., and Kumar, U. (2010). Developing fundamental capabilities for successful e-Government implementation. International Journal of Public Policy, 6(3/4), 318-335.  https://doi.org/10.1504/IJPP.2010.035133
  68. Shareef, M. A., Kumar, V., Kumar, U., and Dwivedi, Y. K. (2011). E-Government adoption model (GAM): Differing service maturity levels. Government Information Quarterly, 28(1), 17-35. doi: 10.1016/j.giq.2010.05.006. 
  69. Sharma, S. K. (2015). Adoption of e-government services: The role of service quality dimensions and demographic variables. Transforming Government: People, Process and Policy, 9(2), 207-222.  https://doi.org/10.1108/TG-10-2014-0046
  70. Soto-Acosta, P., Molina-Castillo, F. J., Lopez-Nicolas, C., and Colomo-Palacios, R. (2014). The effect of information overload and dis-organisation on intention to purchase online: The role of perceived risk and internet experience. Online Information Review, 38(4), 543-561.  https://doi.org/10.1108/OIR-01-2014-0008
  71. Sun, H., and Zhang, P. (2006). The role of moderating factors in user technology acceptance. International journal of human-computer studies, 64(2), 53-78.  https://doi.org/10.1016/j.ijhcs.2005.04.013
  72. Tavitiyaman, P., Zhang, X., and Tsang, W. Y. (2020). How tourists perceive the usefulness of technology adoption in hotels: Interaction effect of past experience and education level. Journal of China Tourism Research. doi: 10.1080/19388160.2020.1801546. 
  73. Taylor, S., and Todd, P. A. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(2), 561-570.  https://doi.org/10.2307/249633
  74. Tong, X. (2010). A cross national investigation of an extended technology acceptance model in the online shopping context. International Journal of Retail & Distribution Management, 38(10), 742-759.  https://doi.org/10.1108/09590551011076524
  75. Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. Nebraska Symposium on Motivation, 195-259. 
  76. Udayan, T. (2020, August 5). 17 Best Online Shopping Apps in India for 2021. Retrieved June 2021, from mindster.com, https://mindster.com/best-online-shopping-apps-india/. 
  77. Undale, S., and Patil, H. (2021). Challenges in implementation of e-Governance in India: A literature review. Journal of Education: Rabindra Bharati University, 24(5), 155-165. 
  78. Vaittinen, E., and Nenonen, S. (2018). Antecedents of consumer acceptance of a manufacturer's goods-related service. Services Marketing Quarterly, 39(4), 310-329. doi: 10.1080/15332969.2018.1514796. 
  79. Venkatesh, V., and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.  https://doi.org/10.1287/mnsc.46.2.186.11926
  80. Venkatesh, V., Morris, M., Davis, G., and Davis, F. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.  https://doi.org/10.2307/30036540
  81. Venkatesh, V., and Speier, C. (2000). Creating an effective training environment for enhancing telework. International Journal of Human-Computer Studies, 52, 991-1005.  https://doi.org/10.1006/ijhc.1999.0367
  82. Venkatesh, V., Sykes, T. A., and Venkatraman, S. (2014). Understanding e-Government portal use in rural India: Role of demographic and personality characteristics. Information Systems Journal, 24, 249-269. doi: 10.1111/isj.12008. 
  83. Venkatesh, V., Thong, J. Y., and Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328-337. https://doi.org/10.17705/1jais.00428