Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2020-0-01797).
References
- 김량형, 유동희, 김건우, "데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측 성능 향상에 관한 연구", Information Systems Review, 제18권, 제2호, 2016, pp. 173-198. https://doi.org/10.29214/damis.2016.35.3.010
- 안철휘, 안현철, "효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용", 한국콘텐츠학회논문지, 제18권, 제8호, 2018, pp. 525-535. https://doi.org/10.5392/JKCA.2018.18.08.525
- Altman, E. L., "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy", The Journal of Finance, Vol.23, No.4, 1968, pp. 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
- Barboza, F., H. Kimura, and E. Altman, "Machine Learning Models and Bankruptcy Prediction", Expert Systems with Applications, Vol.83, 2017, pp. 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
- Barua, S., M. Islam, and X. Yao, "MWMOTEMajority weighted minority oversampling technique for imbalanced data set learning", IEEE Transaction on Knowledge and Data Engineering, Vol.26, No.2, 2014, pp. 405-424. https://doi.org/10.1109/TKDE.2012.232
- Beaver, W., "Financial ratios as predictors of failure, empirical research in accounting: Selected studied", Journal of Accounting Research, Vol.4, No.3, 1996, pp. 71-111. https://doi.org/10.2307/2490171
- Chawla, N. V., A. Lazarevic, L. O. Hall, and K. W. Bowyer, "SMOTEBoost: Improving prediction of the minority class in boosting", Proceedings of 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, 2003, pp. 107-119.
- Davis, J. and M. Goadrich, "The relationship between precision-recall and ROC curves", Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233-240.
- Fawcett, T., "An introduction to ROC analysis", Pattern Recognition Letters, Vol.27, No.8, 2006, pp. 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
- Freund, Y. and R. E. Schapire, "A Decision theoretic generalization of online learning and an application to boosting", Journal of Computer and System Science, Vol.55, No.1, 1997, pp. 119-139. https://doi.org/10.1006/jcss.1997.1504
- He, H. and E. A. Garcia, "Learning from imbalanced data", IEEE Transactions on Knowledge and Data Engineering, Vol.21, No.9, 2009, pp. 1263-1284. https://doi.org/10.1109/TKDE.2008.239
- Kim, M. J. and D. K. Kang, "Ensemble with neural networks for bankruptcy prediction", Expert Systems with Applications, Vol.37, No.4, 2010, pp. 3373-3379. https://doi.org/10.1016/j.eswa.2009.10.012
- Kim, M. J., D. K. Kang, and H. B. Kim, "Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction", Expert Systems with Applications, Vol.42, No.3, 2015, pp. 1074-1082. https://doi.org/10.1016/j.eswa.2014.08.025
- Kim, S. Y. and A. Upneja, "Predicting restaurant financial distress using decision tree and ada-boosted decision tree models", Economic Modeling, Vol.36, 2014, pp. 354-362. https://doi.org/10.1016/j.econmod.2013.10.005
- Kuncheva, L. I., A. Arnaiz-Gonzalez, J. F. Diez-Pastor, and L. A. D. Gunn, "Instance selection improves geometric mean accuracy: A study on imbalanced data classification", Progress in Artificial Intelligence, Vol.8, 2019, pp. 215-228. https://doi.org/10.1007/s13748-019-00172-4
- Kwon, Y. S., I. Han, and K. C. Lee, "Ordinal pairwise partitioning(OPP) approach to neural networks training in bond rating", Intelligent Systems in Accounting, Finance and Management, Vol.6, 1997, 23-40. https://doi.org/10.1002/(SICI)1099-1174(199703)6:1<23::AID-ISAF113>3.0.CO;2-4
- Le, T., M. Y. Lee, J. R. Park, and S. W. Baik, "Oversampling techniques for bankruptcy prediction: novel features from a transaction dataset", Symmetry, Vol.10, No.4, 2018b, Available at https://doi.org/10.3390/sym10040079.
- Le, T., L. H. Son, M. T. Vo, M. Y. Lee, and S. W. Baik, "A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset", Symmetry, Vol.10, No.7, 2018a. Available at https://doi.org/10.3390/sym10070250.
- Lin, W. C., C. F. Tsai, Y. H. Hu, and J. S. Jhang, "Clustering-based undersampling in class imbalanced data", Information Sciences, Vol.409-410, 2017, pp. 17-26. https://doi.org/10.1016/j.ins.2017.05.008
- Mellor, A., S. Boukir, A. Haywood, and S. Jones, "Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin", ISPRS Journal of Photogrammetry and Remote Sensing, Vol.105, 2015, pp. 155-168. https://doi.org/10.1016/j.isprsjprs.2015.03.014
- Messier, W. F. Jr. and J. V. Hansen, "Inducing rules for expert system development: An example using default and bankruptcy data", Management Science, Vol.34, No.4, 1998, pp. 1403-1415. https://doi.org/10.1287/mnsc.34.12.1403
- Nanni, L. and A. Lumini, "A genetic encoding approach for learning methods for combining classifiers", Expert Systems with Applications, Vol.36, No.4, 2009, pp. 7510-7514. https://doi.org/10.1016/j.eswa.2008.09.029
- Odom, M. D. and R. Sharda, "A neural network model for bankruptcy prediction", IJCNN International Joint Conference on Neural Networks Neural Networks, Vol.2, 1990, pp. 163-168.
- Schapire, R. E., "The strength of weak learnability", Machine Learning, Vol.5, No.2, 1990, pp. 197-227. https://doi.org/10.1007/BF00116037
- Seiffert, C., T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, "RUSBoost: Improving classification performance when training data is skewed", Proceedings of the 19th International Conference on Pattern Recognition, 2008, pp. 1-4.
- Shin, K., T. Lee, and H. Kim, "An application of support vector machines in bankruptcy prediction", Expert Systems with Applications, Vol.28, 2005, pp. 127-135. https://doi.org/10.1016/j.eswa.2004.08.009
- Somasundaram, A. and S. Reddy, "Parallel and incremental credit card fraud detection model to handle concept drift and data imbalance", Neural Computing and Applicatopms, Vol.31, 2019, pp. 3-14. https://doi.org/10.1007/s00521-018-3633-8
- UlagaPriya, K. and S. Pushpa, "A comprehensive study on ensemble-based imbalanced data classification methods for bankruptcy data", IEEE 6th international Conference on Inventive Computation Technologies(ICICT), 2021. pp. 800-804.
- Weng, C. G. and J. Poon, "A new evaluation measure for imbalanced datasets", Proceedings of the 7th Australasian Data Mining Conference, Vol.87, 2008, pp. 27-32.
- Zhang, G., M. Y. Hu, B. E. Patuwo, and D. C. Indro, "Theory and methodology artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis", European Journal of Operational Research, Vol.116, 1999, pp. 16-32. https://doi.org/10.1016/S0377-2217(98)00051-4
- Zieba, M., S. K. Tomczak, and J. M. Tomczak, "Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction", Expert Systems with Applications, Vol.58, 2016, pp. 93-101. https://doi.org/10.1016/j.eswa.2016.04.001