DOI QR코드

DOI QR Code

Data-driven Value-enhancing Strategies: How to Increase Firm Value Using Data Science

  • Hyoung-Goo Kang (Department of Finance, Hanyang University Business School) ;
  • Ga-Young Jang (Department of Finance, Hanyang University Business School) ;
  • Moonkyung Choi (The Ministry of Employment and Labor (MOEL))
  • Received : 2022.02.18
  • Accepted : 2022.08.16
  • Published : 2022.09.30

Abstract

This paper proposes how to design and implement data-driven strategies by investigating how a firm can increase its value using data science. Drawing on prior studies on architectural innovation, a behavioral theory of the firm, and the knowledge-based view of the firm as well as the analysis of field observations, the paper shows how data science is abused in dealing with meso-level data while it is underused in using macro-level and alternative data to accomplish machine-human teaming and risk management. The implications help us understand why some firms are better at drawing value from intangibles such as data, data-science capabilities, and routines and how to evaluate such capabilities.

Keywords

Acknowledgement

Dear Professor Byounggu Choi, Thank you so much for such great news. We are truly honored to have our manuscript published in APJIS at your discretion. The camera-ready manuscript is now ready and will be submitted through the system along with other materials (i.e., a copyright agreement and bio). When editing the manuscript, we followed the instruction downloaded from the website. In any case you feel that additional changes are necessary, please kindly let us know so we can address them in time. Again, thank for your kindness and consideration.

References

  1. Angrist, J. D., and Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton university press.
  2. Barney, J. B. (1986). Strategic factor markets: Expectations, luck, and business strategy. Management Science, 32(10), 1231-1241. https://doi.org/10.1287/mnsc.32.10.1231
  3. Brynjolfsson, E., Hitt, L. M., and Kim, H. H. (2011). Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? (SSRN Scholarly Paper ID 1819486). Social Science Research Network. https://doi.org/10.2139/ssrn.1819486
  4. Chesbrough, H. (2002, March 1). Making sense of corporate venture capital. Harvard Business Review, March 2002. https://hbr.org/2002/03/making-sense-of-corporate-venture-capital
  5. Choi, B. (2019). The role of firm size and IT capabilities in open and closed innovation. Asia Pacific Journal of Information Systems, 29(4), 690-716. https://doi.org/10.14329/apjis. 2019.29.4.690
  6. Christensen, C. M. (2013). The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press.
  7. Cohen, W. M., and Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 128-152. https://doi.org/10.2307/ 2393553
  8. Conkle, T. (2020). Council Post: Tempering Your Company's Expectations For AI. Forbes. https://www.forbes.com/sites/forbestechcouncil/2020/09/10/tempering-your-companys-expectations-for-ai/
  9. Conner, K. R. (1991). A historical comparison of resource-based theory and five schools of thought within industrial organization economics: Do we have a new theory of the firm? Journal of Management, 17(1), 121-154. https://doi.org/10.1177/014920639101700109
  10. Conner, K. R., and Prahalad, C. K. (1996). A resource-based theory of the firm: Knowledge versus opportunism. Organization Science, 7(5), 477-501. https://doi.org/10.1287/ orsc.7.5.477
  11. Cool, K., and Schendel, D. (1988). Performance differences among strategic group members. Strategic Management Journal, 9(3), 207-223. https://doi.org/10.1002/smj.42500 90302
  12. Cyert, R. M., and March, J. G. (1963). A behavioral theory of the firm: Assessment and prospects. Englewood Cliffs, NJ, 2(4), 169-187. https://doi.org/10.5465/19416520. 2012.656841
  13. Dess, G. G., and Davis, P. S. (1984). Porter's (1980) generic strategies as determinants of strategic group membership and organizational performance. Academy of Management Journal, 27(3), 467-488. http://dx.doi.org/10.2307/256040
  14. Dierickx, I., and Cool, K. (1989). Asset Stock Accumulation and Sustainability of Competitive Advantage. Management Science, 35(12), 1504-1511. https://doi.org/10.1287/mnsc.35 .12.1504
  15. Dosi, G., Nelson, R., and Winter, S. (2001). The Nature and Dynamics of Organizational Capabilities. OUP Oxford.
  16. The Economist. (May 6, 2017). The world's most valuable resource is no longer oil, but data. Retrieved from https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data.
  17. Eisenhardt, K. M., and Santos, F. M. (2002). Knowledge-based view: A new theory of strategy. Handbook of Strategy and Management, 1(1), 139-164.
  18. Gavetti, G., Levinthal, D., and Ocasio, W. (2007). Perspective-Neo-Carnegie: The carnegie school's past, present, and reconstructing for the future. Organization Science, 18(3), 523-536. https://doi.org/10. 1287/orsc.1070.0277 https://doi.org/10.1287/orsc.1070.0277
  19. Grant, R. M. (1996). Toward the knowledge-based theory of the firm. Strategic Management Journal, 17(S2), 109-122. https://doi.org/10.1002/smj.4250171110
  20. Grant, R. M., and Baden-Fuller, C. (1995). The knowledge-based theory of inter-firm collaboration. Academy of Management Proceedings, 1995(1), 17-21. https://doi.org/10.5465/ambpp.1995.17536229
  21. Henderson, R. M., and Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 9-30. https://doi.org/10.2307/ 2393549
  22. Hisrich, R. D., and Jankowicz, A. D. (1990). Intuition in venture capital decisions: An exploratory study using a new technique. Journal of Business Venturing, 5(1), 49-62. https://doi.org/10.1016/0883-9026(90)90026-P
  23. Ka, H. K., and Kim, J. S. (2014). An empirical study on the influencing factors for big data intended adoption: Focusing on the strategic value recognition and TOE framework. Asia Pacific Journal of Information Systems, 24(4), 443-472. https://doi.org/10.14329/apjis.2014.24.4.443
  24. Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., and Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review and Deloitte University Press, 14(1-25).
  25. Kang, H. G., Bae, K., and Ku, B. (2019). Artificial Intelligence and Financial Investment Strategy. The Korean Economic Review, 12(3), 93-110.
  26. Kang, H. G., Woo, W., Burton, R. M., and Mitchell, W. (2018). Constructing MandA valuation: how do merger evaluation methods differ as uncertainty and controversy vary?. Journal of Organization Design, 7(1), 1-46. http://dx.doi.org/10.1186/s41469-017-0025-y
  27. Kapoor, R., and Lim, K. (2007). The impact of acquisitions on the productivity of inventors at semiconductor firms: A synthesis of knowledgebased and incentive-based perspectives. Academy of Management Journal, 50(5), 1133-1155. https://doi.org/10.5465/amj. 2007.27169706
  28. Kessler, J. (2019). Data Protection in the Wake of the GDPR: California's Solution for Protecting "The World's Most Valuable Resource". Southern California Law Review, 93(1), 99-128. Retrieved from https://southerncalifornialawreview.com/2019/11/01/data-protection-in-the-wake-of-the-gdpr-californias-solution-for-protecting-the-worlds-most-valuable-resource-note-by-joanna-kessler/
  29. Keynes, J. M. (1921). A TreatiSe on Probability. Courier Corporation.
  30. Keynes, J. M. (1937). The general theory of employment. The Quarterly Journal of Economics, 51(2), 209-223. https://doi.org/ 10.2307/1882087
  31. Kim, E., Jang, G. Y., and Kim, S. H. (2022). How to Apply Artificial Intelligence for Social Innovations. Applied Artificial Intelligence, 1-22. https://doi.org/10.1080/08839514. 2022.2031819
  32. Kim, Y. J., Nam, K. C., Song, J. K., and Koo, C. M. (2007). An empirical investigation into the role of core-competency orientation and IT outsourcing process management capability. Asia Pacific Journal of Information Systems, 17(3), 131-146.
  33. Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., and Mullainathan, S. (2018). Human decisions and machine predictions. The Quarterly Journal of Economics, 133(1), 237-293. https://doi.org/10.1093/qje/qjx032
  34. Knight, F. H. (1921). Risk, Uncertainty and Profit. Courier Corporation.
  35. Kogut, B., and Zander, U. (1996). What firms do? Coordination, identity, and learning. Organization Science, 7(5), 502-518. https://doi.org/10.1287/orsc.7.5.502
  36. Kretschmer, T., Leiponen, A., Schilling, M., and Vasudeva, G. (2022). Platform ecosystems as metaorganizations: Implications for platform strategies. Strategic Management Journal, 43(3), 405-424. https://doi.org/10.1002/ smj.3250
  37. Lewis, M. (2004). Moneyball: The Art of Winning an Unfair Game. WW Norton & Company.
  38. Lyons, J. B., Wynne, K. T., Mahoney, S., and Roebke, M. A. (2019). Trust and human-machine teaming: A qualitative study. In Artificial Intelligence for the Internet of Everything (pp. 101-116). https://doi.org/10.1016/B978-0-12-817636-8.00006-5
  39. March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71-87. https://doi.org/10.1287 /orsc.2.1.71 https://doi.org/10.1287/orsc.2.1.71
  40. Mazzucato, M. (2011). The entrepreneurial state. Soundings, 49(49), 131-142. https://doi.org/10.3898/136266211798411183
  41. Pomerance, J. M., and McCarthy, D. (2018). Private Equity Investing 2018: Rethinking the Private Equity Investment Model to Build Value. The Journal of Private Equity, 22(1), 10-16. https://doi.org/10.3905/jpe.2018.22.1.010
  42. Pongpisutsopa, S., Thammaboosadee, S., and Chuckpaiwong, R. (2020). Factors affecting HR analytics adoption: A systematic review using literature weighted scoring approach. Asia Pacific Journal of Information Systems, 30(4), 847-878. https://doi.org/10.14329/apjis.2020.30.4.847
  43. Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance (Illustrated Edition). Free Press.
  44. Ramirez, R., and Wilkinson, A. (2016). Strategic Reframing: The Oxford Scenario Planning Approach. Oxford University Press.
  45. Roberts, M. R., and Whited, T. M. (2013). Endogeneity in empirical corporate finance1. In Handbook of the Economics of Finance, 2, 493-572. https://doi.org/10.1016/B978-0-44-453594-8.00007-0
  46. Schaefer, D., Walker, J., and Flynn, J. (2017). A data-driven business model framework for value capture in Industry 4.0. Advances in Transdisciplinary Engineering, 6(2017), 245-250. https://doi.org/10.3233/978-1- 61499-792-4-245
  47. Sebastian-Coleman, L. (2018). Navigating the Labyrinth: An Executive Guide to Data Management. Technics Publications.
  48. Sorescu, A. (2017). Data-driven business model innovation. Journal of Product Innovation Management, 34(5), 691-696. https://doi.org/10.1111/jpim.12398
  49. Subrahmanyan, S. N., and Jalona, S. (2020, February 28). Building a Data-Driven Culture from the Ground Up. Harvard Business Review. Retrieved from https://hbr.org/2020/02building-a-data-driven-culture-from-the-ground-up
  50. Thiel, P. A., and Masters, B. (2014). Zero to One: Notes on Startups, or How to Build the Future. Broadway Business.
  51. Waller, D. (2020, February 6). 10 Steps to Creating a Data-Driven Culture. Harvard Business Review. Retrieved from https://hbr.org/2020/02/10-steps-tocreating-a-data-driven-culture
  52. Walliser, J. C., de Visser, E. J., Wiese, E., and Shaw, T. H. (2019). Team structure and team building improve human-machine teaming with autonomous agents. Journal of Cognitive Engineering and Decision Making, 13(4), 258-278. https://doi.org/10.1177/15553434198675
  53. Yli-Renko, H., Autio, E., and Sapienza, H. J. (2001). Social capital, knowledge acquisition, and knowledge exploitation in young technology-based firms. Strategic Management Journal, 22(6-7), 587-613. https://doi.org/10.1002/smj.183.