DOI QR코드

DOI QR Code

What's for Dinner? Factors Contributing to the Continuous Usage of Food Delivery Apps (FDAs)

  • Ahmad A. Rabaa'i (School of Business, New Jersey City University (NJCU))
  • 투고 : 2022.01.11
  • 심사 : 2022.04.18
  • 발행 : 2022.06.30

초록

This study proposed a novel model to investigate influential factors affecting the intention to continue using increasingly popular food delivery apps (FDAs). The proposed theoretical model is developed and validated to extend traditional technology acceptance and adoption theories by identifying several determinant factors that capture the unique context of FDAs continuous usage. Hypotheses were tested using a partial least square structural equation modeling approach (PLS-SEM) on data collected from 331 actual FDAs users during the COVID-19 pandemic. The results reveal that convenience, perceived compatibility, delivery experience, and online reviews significantly influence the continuous usage of FDAs. The findings also confirm the importance of continuous intention on the actual use of FDAs. The research model of this study explains 65% of variance in continuous intention and 47% in actual use. The insights provided by this study suggest fruitful directions for future research. They can also help FDAs companies, developers and marketers with strategies and tips for further development and growth by ensuring users' continuous usage of these platforms.

키워드

참고문헌

  1. Al Amin, M., Arefin, M. S., Alam, M. R., Ahammad, T., and Hoque, M. R. (2021). Using mobile food delivery applications during COVID-19 pandemic: An extended model of planned behavior. Journal of Food Products Marketing, 27(2), 105-126. https://doi.org/10.1080/10454446.2021.1906817
  2. Alagoz, S. M., and Hekimoglu, H. (2012). A study on tam: Analysis of customer attitudes in online food ordering system. Procedia - Social and Behavioral Sciences, 62, 1138-1143. https://doi.org/10.1016/j.sbspro.2012.09.195
  3. Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
  4. Alam, M. Z., Hoque, Md. R., Hu, W., and Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143. https://doi.org/10.1016/j.ijinfomgt.2019.04.016
  5. Al-Emran, M., Arpaci, I., and Salloum, S. A. (2020). An empirical examination of continuous intention to use m-learning: An integrated model. Education and Information Technologies. https://doi.org/10.1007/s10639-019-10094-2
  6. Alshurideh, M., Al Kurdi, B., Salloum, S. A., Arpaci, I., and Al-Emran, M. (2020). Predicting the actual use of m-learning systems: A comparative approach using PLS-SEM and machine learning algorithms. Interactive Learning Environments, 28(7), 1-15. https://doi.org/10.1080/10494820.2020.1826982
  7. Aureliano-Silva, L., Leung, X., and Spers, E. E. (2021). The effect of online reviews on restaurant visit intentions: Applying signaling and involvement theories. Journal of Hospitality and Tourism Technology, 12(4), 672-688. https://doi.org/10.1108/JHTT-06-2020-0143
  8. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
  9. Chatterjee, D., and Bolar, K. (2019). Determinants of mobile wallet intentions to use: The mental cost perspective. International Journal of Human-Computer Interaction, 35(10), 859-869. https://doi.org/10.1080/10447318.2018.1505697
  10. Chawla, D., and Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India: An empirical study. International Journal of Bank Marketing, 37(7), 1590-1618. https://doi.org/10.1108/IJBM-09-2018-0256
  11. Cheung, C. M. K., Lee, M. K. O., and Rabjohn, N. (2008). The impact of electronic word-ofmouth: The adoption of online opinions in online customer communities. Internet Research, 18(3), 229-247. https://doi.org/10.1108/10662240810883290
  12. Chin, W. W. (2010). Bootstrap cross-validation indices for PLS path model assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler and H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83-97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
  13. Cho, M., Bonn, M. A., and Li, J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116. https://doi.org/10.1016/j.ijhm.2018.06.019
  14. Chopdar, P. K., and Balakrishnan, J. (2020). Consumers response towards mobile commerce applications: S-O-R approach. International Journal of Information Management, 53, 102106. https://doi.org/10.1016/j.ijinfomgt.2020.102106
  15. Chopdar, P. Kr., Korfiatis, N., Sivakumar, V. J., and Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128. https://doi.org/10.1016/j.chb.2018.04.017
  16. Chopdar, P. Kr., and Sivakumar, V. J. (2019). Understanding continuance usage of mobile shopping applications in India: The role of espoused cultural values and perceived risk. Behaviour & Information Technology, 38(1), 42-64. https://doi.org/10.1080/0144929X.2018.1513563
  17. Correa, J. C., Garzon, W., Brooker, P., Sakarkar, G., Carranza, S. A., Yunado, L., and Rincon, A. (2019). Evaluation of collaborative consumption of food delivery services through web mining techniques. Journal of Retailing and Consumer Services, 46, 45-50. https://doi.org/10.1016/j.jretconser.2018.05.002
  18. Dai, H. M., Teo, T., Rappa, N. A., and Huang, F. (2020). Explaining Chinese university students' continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
  19. Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480-490. https://doi.org/10.1016/j.tele.2018.01.007
  20. Dehghani, M., and Tumer, M. (2015). A research on effectiveness of Facebook advertising on enhancing purchase intention of consumers. Computers in Human Behavior, 49, 597-600. https://doi.org/10.1016/j.chb.2015.03.051
  21. Duda-Chodak, A., Lukasiewicz, M., Ziec, G., Florkiewicz, A., and Filipiak-Florkiewicz, A. (2020). Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends in Food Science & Technology, 105, 145-160. https://doi.org/10.1016/j.tifs.2020.08.020
  22. Elvandari, C. D. R., Sukartiko, A. C., and Nugrahini, A. D. (2018). Identification of technical requirement for improving quality of local online food delivery service in Yogyakarta. Journal of Industrial and Information Technology in Agriculture, 1(2), 1-7. https://doi.org/10.24198/jiita.v1i2.14573
  23. Elwalda, A., Lu, K., and Ali, M. (2016). Perceived derived attributes of online customer reviews. Computers in Human Behavior, 56, 306-319. https://doi.org/10.1016/j.chb.2015.11.051
  24. Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. https://doi.org/10.1016/j.jbusres.2014.11.006
  25. Gefen, D., Rigdon, E. E., and Straub, D. (2011). An update and extension to SEM guidelines for administrative and social science research. MIS Quarterly, 35(2), iii-xiv. https://doi.org/10.2307/23044042
  26. Global Finance. (2020). Kuwait Startups: Seeding Tomorrow's Giants, Retrieved from https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
  27. GSMA. (2020). The Mobile Economy 2020, Retrieved from https://www.gsma.com/mobileeconomy/
  28. Gunden, N., Morosan, C., and DeFranco, A. (2020). Consumers' intentions to use online food delivery systems in the USA. International Journal of Contemporary Hospitality Management, 32(3), 1325-1345. https://doi.org/10.1108/IJCHM-06-2019-0595
  29. Gutierrez, A., O'Leary, S., Rana, N. P., Dwivedi, Y. K., and Calle, T. (2019). Using privacy calculus theory to explore entrepreneurial directions in mobile location-based advertising: Identifying intrusiveness as the critical risk factor. Computers in Human Behavior, 95, 295-306. https://doi.org/10.1016/j.chb.2018.09.015
  30. Hagberg, J., and Holmberg, U. (2017). Travel modes in grocery shopping. International Journal of Retail & Distribution Management, 45(9), 991-1010. https://doi.org/10.1108/IJRDM-08-2016-0134
  31. Hair, J., Hollingsworth, C. L., Randolph, A. B., and Chong, A. Y. L. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. https://doi.org/10.1108/IMDS-04-2016- 0130
  32. Hair, J. F., Hult, T., Ringle, C., and Sarstedt, M. (2017b). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.
  33. Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  34. Hair, J. F., Sarstedt, M., Hopkins, L., and G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013- 0128
  35. Hammouri, Q., Altaher, A., Al-Gasawneh, J., Rabaa'i, A., Aloqool, A., and Khataybeh, H. (2022). Understanding the determinants of digital shopping features: The role of promo code on customer behavioral intention, International Journal of Data and Network Science. https://doi.org/10.5267/j.ijdns.2022. 4.009
  36. Hanafizadeh, P., Behboudi, M., Abedini Koshksaray, A., and Jalilvand Shirkhani Tabar, M. (2014). Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1), 62-78. https://doi.org/10.1016/j.tele.2012.11.001
  37. He, Z., Han, G., Cheng, T. C. E., Fan, B., and Dong, J. (2019). Evolutionary food quality and location strategies for restaurants in competitive online-to-offline food ordering and delivery markets: An agent-based approach. International Journal of Production Economics, 215, 61-72. https://doi.org/10.1016/j.ijpe.2018.05.008
  38. Henseler, J., Hubona, G., and Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382
  39. Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  40. Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics and P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009) 0000020014
  41. Hock, C., Ringle, C. M., and Sarstedt, M. (2010). Management of multi-purpose stadiums: Importance and performance measurement of service interfaces. International Journal of Services Technology and Management, 14(2/3), 188. https://doi.org/10.1504/IJSTM.2010.034327
  42. Hong, H., Ye, Q., Xu, D., and Jin, Y. (2018). Travel and Online Review Behavior. PACIS 2018 Proceedings. Retrieved from https://aisel.aisnet.org/pacis2018/3
  43. Hu, N., Liu, L., and Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214. https://doi.org/10.1007/s10799-008-0041-2
  44. Huang, Y., and Oppewal, H. (2006). Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. International Journal of Retail & Distribution Management, 34(4/5), 334-353. https://doi.org/10.1108/09590550610660260
  45. Huang, Y. M. (2019). Examining students' continued use of desktop services: Perspectives from expectation- confirmation and social influence. Computers in Human Behavior, 96, 23-31. https://doi.org/10.1016/j.chb.2019.02.010
  46. Hume, M. (2008). Developing a conceptual model for repurchase intention in the performing arts: The roles of emotion, core service and service delivery. International Journal of Arts Management, 10(2), 40-55. JSTOR.
  47. IMARC. (2020). Global Online Food Delivery Market to Reach US$ 164.5 Billion by 2024, Stimulated by Development of User-Friendly Applications, Retrieved from https://www.imarcgroup.com/global-online-food-delivery-market
  48. Joo, Y. J., Kim, N., and Kim, N. H. (2016). Factors predicting online university students' use of a mobile learning management system (m-LMS). Educational Technology Research and Development, 64(4), 611-630. https://doi.org/10.1007/s11423-016-9436-7
  49. Kang, J. W., and Namkung, Y. (2019). The information quality and source credibility matter in customers' evaluation toward food O2O commerce. International Journal of Hospitality Management, 78, 189-198. https://doi.org/10.1016/j.ijhm.2018.10.011
  50. Kapoor, A. P., and Vij, M. (2018). Technology at the dinner table: Ordering food online through mobile apps. Journal of Retailing and Consumer Services, 43, 342-351. https://doi.org/10.1016/j.jretconser. 2018.04.001
  51. Karahanna, E., Agarwal, R., and Angst, C. M. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS Quarterly, 30(4), 781-804. https://doi.org/10.2307/25148754
  52. Kaur, P., Dhir, A., Talwar, S., and Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. International Journal of Contemporary Hospitality Management, 33(4), 1129-1159. https://doi.org/10.1108/IJCHM-05-2020-0477
  53. Kenny, D. (2018). Moderator Variables, Retrieved from http://davidakenny.net/cm/moderation.htm
  54. KFAS. (2019). FinTech: Future of Financial services, Retrieved from https://www.kfas.com/media/studies
  55. Kim, C., Galliers, R. D., Shin, N., Ryoo, J. H., and Kim, J. (2012). Factors influencing Internet shopping value and customer repurchase intention. Electronic Commerce Research and Applications, 11(4), 374-387. https://doi.org/10.1016/j.elerap.2012.04.002
  56. Kim, E. L., and Tanford, S. (2019). Seeking reward or avoiding risk from restaurant reviews: Does distance matter? International Journal of Contemporary Hospitality Management, 31(12), 4482-4499. https://doi.org/10.1108/IJCHM-03-2018-0235
  57. Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications.
  58. Konig, T. M., Hein, N., and Nimsgern, V. (2022). A value perspective on online review platforms: Profiling preference structures of online shops and traditional companies. Journal of Business Research, 145, 387-401. https://doi.org/10.1016/j.jbusres.2022.02.080
  59. Kumar, S., and Shah, A. (2021). Revisiting food delivery apps during COVID-19 pandemic? Investigating the role of emotions. Journal of Retailing and Consumer Services, 62, 102595. https://doi.org/10.1016/j.jretconser.2021.102595
  60. Lee, E. Y., Lee, S. B., and Jeon, Y. J. J. (2017). Factors influencing the behavioral intention to use food delivery apps. Social Behavior and Personality: An International Journal, 45(9), 1461-1473. https://doi.org/10.2224/sbp.6185
  61. Lee, J. (2019). Effects of service and mobile app quality on customer satisfaction and repurchase intention in the context of O2O food delivery services in Korea and China. Test Engineering and Management, 81(11/12), 335-345.
  62. Lee, S. W., Sung, H. J., and Jeon, H. M. (2019). Determinants of continuous intention on food delivery apps: Extending UTAUT2 with information quality. Sustainability, 11(11), 3141. https://doi.org/10.3390/su11113141
  63. Leung, L., and Chen, C. (2017). Extending the theory of planned behavior: A study of lifestyles, contextual factors, mobile viewing habits, TV content interest, and intention to adopt mobile TV. Telematics and Informatics, 34(8), 1638-1649. https://doi.org/10.1016/j.tele.2017.07.010
  64. Liebana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., and Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130. https://doi.org/10.1016/j.techfore.2017.12.015
  65. Liu, H., Lobschat, L., Verhoef, P. C., and Zhao, H. (2019). App adoption: The effect on purchasing of customers who have used a mobile website previously. Journal of Interactive Marketing, 47, 16-34. https://doi.org/10.1016/j.intmar.2018.12.001
  66. Maimaiti, M., Zhao, X., Jia, M., Ru, Y., and Zhu, S. (2018). How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. European Journal of Clinical Nutrition, 72(9), 1282-1286. https://doi.org/10.1038/s41430-018-0191-1
  67. Marinkovic, V., Dordevic, A., and Kalinic, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306-318. https://doi.org/10.1080/09537325.2019.1655537
  68. McLean, G., Osei-Frimpong, K., Al-Nabhani, K., and Marriott, H. (2020). Examining consumer attitudes towards retailers' m-commerce mobile applications - An initial adoption vs. Continuous use perspective. Journal of Business Research, 106, 139-157. https://doi.org/10.1016/j.jbusres.2019. 08.032
  69. Mehra, A., Paul, J., and Kaurav, R. P. S. (2020). Determinants of mobile apps adoption among young adults: Theoretical extension and analysis. Journal of Marketing Communications, 1-29. https://doi.org/10.1080/13527266.2020.1725780
  70. Mehrolia, S., Alagarsamy, S., and Solaikutty, V. M. (2021). Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396-408. https://doi.org/10.1111/ijcs.12630
  71. Morganosky, M. A., and Cude, B. J. (2000). Consumer response to online grocery shopping. International Journal of Retail & Distribution Management, 28(1), 17-26. https://doi.org/10.1108/09590550010306737
  72. Nejati, M., and Parakhodi Moghaddam, P. (2013). The effect of hedonic and utilitarian values on satisfaction and behavioural intentions for dining in fast-casual restaurants in Iran. British Food Journal, 115(11), 1583-1596. https://doi.org/10.1108/BFJ-10-2011-0257
  73. Nunnally, C., and Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
  74. Okumus, B., Ali, F., Bilgihan, A., and Ozturk, A. B. (2018). Psychological factors influencing customers' acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72, 67-77. https://doi.org/10.1016/j.ijhm.2018.01.001
  75. Okumus, B., and Bilgihan, A. (2014). Proposing a model to test smartphone users' intention to use smart applications when ordering food in restaurants. Journal of Hospitality and Tourism Technology, 5(1), 31-49. https://doi.org/10.1108/JHTT-01-2013-0003
  76. Oliveira, T., Thomas, M., Baptista, G., and Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. https://doi.org/10.1016/j.chb.2016. 03.030
  77. Ozturk, A. B., Bilgihan, A., Nusair, K., and Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350-1359. https://doi.org/10.1016/j.ijinfomgt.2016. 04.005
  78. Pigatto, G., Machado, J. G. de C. F., Negreti, A. dos S., and Machado, L. M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657. https://doi.org/10.1108/BFJ-05-2016-0207
  79. Qahri-Saremi, H., and Montazemi, A. R. (2022). Negativity bias in the diagnosticity of online review content: The effects of consumers' prior experience and need for cognition. European Journal of Information Systems, 31(2), 1-18. https://doi.org/10.1080/0960085X.2022.2041372
  80. Rabaa'i, A. A. (2017a). Holistic procedures for contemporary formative construct validation using PLS: A comprehensive example. International Journal of Business Information Systems, 25(3), 279-318. https://doi.org/10.1504/IJBIS.2017.084436
  81. Rabaa'i, A. A. (2017b). The use of UTAUT to investigate the adoption of e-government in Jordan: A cultural perspective. International Journal of Business Information Systems, 24(3), 285-315. https://doi.org/10.1504/IJBIS.2017.082037
  82. Rabaa'i, A. A., and Abu ALMaati, S. (2021). Exploring the determinants of users' continuance intention to use mobile banking services in Kuwait: Extending the expectation-confirmation model. Asia Pacific Journal of Information Systems, 3, 141-184. https://doi.org/10.14329/apjis.2021.31 .2.141
  83. Rabaa'i, A. A., ALmaati, S. A., and Zhu, X. (2021). Students' continuance intention to use Moodle: An expectationconfirmation model approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397-434. https://doi.org/10.28945/4842
  84. Rabaa'i, A. A., Bhat, H., and Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. International Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
  85. Rabaa'i, A. A., Tate, M., and Gable, G. (2015). Can't see the trees for the forest? Why IS-SERVQUAL items matter. Asia Pacific Journal of Information Systems, 25(2), 211-238. https://doi.org/10.14329/apjis.2015.25. 2.211
  86. Rabaa'i, A. A., and Zhu, X. (2021). Understanding the determinants of wearable payment adoption: An empirical study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173- 211. https://doi.org/10.28945/4746
  87. Rabaa'i, Ahmad A., Zhu, X., Jayaraman, J. D., Jha, P., and Nguyen, T. (2022). A Neural Network Approach to Examine the Continuous Usage of Mobile Food Delivery Apps. Proceedings of the 2nd International Business Analytics Conference, April 9, 2022, Mumbai, India.
  88. Rabaai, A. A., Zogheib, B., AlShatti, A., and AlJamal, E. M. (2015). Adoption of e-government in developing countries: The case of the state of Kuwait. Journal of Global Research in Computer Science, 6(10), 6-21.
  89. Rabaai, A., and Gable, G. (2012). IS service quality as a multi-dimensional formative construct. Proceedings of the 16th Pacific Asia Conference on Information Systems (PACIS), 1-19.
  90. Rabaa'i, A. (in press a). FinTech in Kuwait: A survey study. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021. 10042271
  91. Rabaa'i, A. (in press b). Factors affecting the adoption of Mobile Grocery Delivery Applications (MGDAs), International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10045250
  92. Rabaa'i, A. (in press c). An investigation into the acceptance of mobile wallets in the FinTech era: An empirical study from Kuwait, International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10038422
  93. Ramos De Luna, I., Montoro-Rios, F., and Liebana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Information Systems and E-Business Management, 14(2), 293-314. https://doi.org/10.1007/s10257-015-0284-5
  94. Ramus, K., and Asger Nielsen, N. (2005). Online grocery retailing: What do consumers think? Internet Research, 15(3), 335-352. https://doi.org/10.1108/10662240510602726
  95. Ray, A., Dhir, A., Bala, P. K., and Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer Services, 51, 221-230. https://doi.org/10.1016/j.jretconser.2019.05.025
  96. Ringle, C., Wende, S., and Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. Retrieved from http://www.smartpls.com
  97. Rogers, E. (2003). Diffusion of Innovations (5th ed.). Free Press.
  98. Roh, M., and Park, K. (2019). Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. International Journal of Information Management, 47, 262-273. https://doi.org/10.1016/j.ijinfomgt.2018.09.017
  99. Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., and Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115. https://doi.org/10.1016/j.jfbs.2014.01.002
  100. Shareef, M. A., Dwivedi, Y. K., Kumar, V., and Kumar, U. (2016). Reformation of public service to meet citizens' needs as customers: Evaluating SMS as an alternative service delivery channel. Computers in Human Behavior, 61, 255-270. https://doi.org/10.1016/j. chb.2016.03.002
  101. Sharma, S. K., Sharma, H., and Dwivedi, Y. K. (2019). A hybrid SEM-Neural network model for predicting determinants of mobile payment services. Information Systems Management, 36(3), 243-261. https://doi.org/10.1080/10580530.2019.1620504
  102. Shugan, S. M. (2004). The impact of advancing technology on marketing and academic research. Marketing Science, 23(4), 469-475. https://doi.org/10.1287/mksc.1040. 0096
  103. Singh, N., Sinha, N., and Liebana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191-205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
  104. Slade, E., Williams, M., Dwivedi, Y., and Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. https://doi.org/10.1080/0965254X.2014. 914075
  105. Statista. (2019). Kuwait: Gross domestic product (GDP) in current prices from 1984 to 2024, Retrieved from https://www.statista.com/statistics/438858/gross-domestic-product-gdp-in-kuwait/
  106. Statistia. (2020). eServices Report 2019-Online Food Delivery, Retrieved from https://www.statista.com/study/40457/food-delivery/
  107. Straub, D., and Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems, 13. https://doi.org/10.17705 /1CAIS.01324 https://doi.org/10.17705/1CAIS.01324
  108. Su, P., Wang, L., and Yan, J. (2018). How users' Internet experience affects the adoption of mobile payment: A mediation model. Technology Analysis & Strategic Management, 30(2), 186-197. https://doi.org/10.1080/09537325.2017.1297788
  109. Suhartanto, D., Helmi Ali, M., Tan, K. H., Sjahroeddin, F., and Kusdibyo, L. (2019). Loyalty toward online food delivery service: The role of e-service quality and food quality. Journal of Foodservice Business Research, 22(1), 81-97. https://doi.org/10.1080/15378020.2018.1546076
  110. Talabat. (2021). The number of restaurants in Kuwait, Retrieved from https://www.talabat.com/kuwait/restaurants?page=121
  111. Troise, C., O'Driscoll, A., Tani, M., and and Prisco, A. (2020). Online food delivery services and behavioural intention: A test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664-683. https://doi.org/10.1108/BFJ-05-2020-0418
  112. Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. JSTOR. https://doi.org/10.2307/41410412
  113. Wang, Q., Zhang, W., Li, J., Mai, F., and Ma, Z. (2022). Effect of online review sentiment on product sales: The moderating role of review credibility perception. Computers in Human Behavior, 133, 107272. https://doi.org/10.1016/j.chb.2022.107272
  114. Wang, W. T., Ou, W. M., and Chen, W. Y. (2019). The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective. International Journal of Information Management, 44, 178-193. https://doi.org/10.1016/j.ijinfomgt.2018.10.011
  115. WHO. (2020). COVID-19 and food safety: Guidance for food businesses, Retrieved from https://apps.who.int/iris/bitstream/handle/10665/331705/WHO-2019-nCoV-Food_Safety-2020.1-eng.pdf
  116. WHO. (2021). WHO Coronavirus (COVID-19) Dashboard, Retrieved from https://covid19. who.int/
  117. Yen, C. L. A., and Tang, C. H. H. (2019). The effects of hotel attribute performance on electronic word-of-mouth (eWOM) behaviors. International Journal of Hospitality Management, 76, 9-18. https://doi.org/10.1016/j.ijhm.2018.03.006
  118. Yeo, V. C. S., Goh, S. K., and Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward Online Food Delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162. https://doi.org/10.1016/j.jretconser.2016.12.013
  119. Zawya. (2021). Kuwait eateries, cafes climb in count, Retrieved from https://www.zawya.com/mena/en/business/story/Kuwait_eateries_cafes_climb_in_count-SNG_244929858/
  120. Zhao, H., Anong, S. T., and Zhang, L. (2019). Understanding the impact of financial incentives on NFC mobile payment adoption: An experimental analysis. International Journal of Bank Marketing, 37(5), 1296-1312. https://doi.org/10.1108/IJBM-08 -2018-0229
  121. Zhao, Y., and Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 102683. https://doi.org/10.1016/j.ijhm.2020.102683
  122. Zogheib, B., Rabaa'i, A., Zogheib, S., and Elsaheli, A. (2015). University student perceptions of technology use in mathematics learning. Journal of Information Technology Education: Research, 14, 417-438. https://doi.org/10.28945 /2315 https://doi.org/10.28945/2315