DOI QR코드

DOI QR Code

원전 구조물-기기 상호작용이 기기 지진응답에 미치는 영향 연구

A Study on the Effects of Nuclear Power Plant Structure-Component Interaction in Component Seismic Responses

  • 곽신영 (한밭대학교 건설환경공학과) ;
  • 임승현 (경북대학교 융복합시스템공학부) ;
  • 정광섭 (한국원자력연구원 수출용신형연구로실증사업단) ;
  • 정재욱 (한국원자력연구원 첨단구조지진안전연구부) ;
  • 최인길 (한국원자력연구원 첨단구조지진안전연구부)
  • Kwag, Shinyoung (Department of Civil & Environmental Engineering, Hanbat National University) ;
  • Eem, Seunghyun (Department of Convergence and Fusion System Engineering, Kyungpook National University) ;
  • Jung, Kwangsub (Korea Atomic Energy Research Institute) ;
  • Jung, Jaewook (Korea Atomic Energy Research Institute) ;
  • Choi, In-Kil (Korea Atomic Energy Research Institute)
  • 투고 : 2021.12.13
  • 심사 : 2022.04.06
  • 발행 : 2022.04.30

초록

원자력발전소 기기 내진설계 및 지진해석은 비연계모델을 대상으로 수행된다. 그러나 이러한 비연계해석은 실제 구조물-기기 간 상호작용 등의 실제 현상을 모사할 수 없기 때문에 연계해석에 비하여 정확하지 못한 결과를 발생시키게 된다는 한계를 가진다. 이러한 배경 아래 이 연구는 실제 원전 격납건물 구조물 및 관련 부계통을 대상으로 질량비와 고유진동수비를 고려하여 지진 연계해석과 비연계해석을 수행하고, 이를 바탕으로 부계통에서의 응답을 비교 분석하였다. 결과적으로 지진 연계해석 결과가 비연계해석 결과보다 대다수 작은 값을 주는 것을 확인하였다. 이러한 결과는 기존 연구인 단순한 연계모델에 대한 해석 결과와 유사하지만, 부계통 응답 차이는 훨씬 더 두드러지게 나타나는 것을 확인하였다. 또한, 이는 지진파의 입력 주파수의 영향보다는 부계통의 설치위치에 영향을 받는 것으로 확인되었다. 마지막으로 비연계 및 연계 지진해석의 차이가 부계통의 질량비가 크고, 고유진동수가 거의 일치하는 영역에서 발생하는 이유는 이 영역에서 주계통과 부계통 동적 상호작용이 크게 나타나기 때문인 것으로 보인다.

Seismic design and analysis of nuclear power plant components are performed based on an decoupled model. However, this decoupled analysis has a limitation in that it generates inaccurate results compared to the coupled analysis because it cannot simulate actual phenomena such as the interaction between structures and components. Thus, this study performed seismic coupled and decoupled analysis on an existing nuclear containment structure and related components, considering the mass and natural frequency ratios. And based on these results, comparative analyses of responses of components were conducted. Consequently, the seismic coupled analysis result generally gave a smaller value than the decoupled analysis result. These results were similar to the analysis results for the simple coupled model, which was an existing study, but the difference in component responses was much more pronounced. Also, this was influenced by the installation location of the component rather than the influence of the input frequency of the input seismic motions. Finally, the difference between the decoupled and coupled seismic analysis occurred in the region where the mass ratio of the components was large, and the natural frequencies were almost similar due to the considerable dynamic interaction between the structure and the component in this realm.

키워드

과제정보

본 연구는 2017년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(No. 20171510101910)을 받아 수행되었습니다. 또한, 본 연구은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2020R1G1A1005510)을 받아 수행되었습니다.

참고문헌

  1. Burdisso, R.A., Singh, M.P. (1987) Seismic Analysis of Multiply Supported Secondary Systems with Dynamic Interaction Effects, Earthq. Eng. & Struct. Dyn., 15(8), pp.1005~1022. https://doi.org/10.1002/eqe.4290150807
  2. Chaudhuri, S.R., Gupta, V.K. (2002) Variability in Seismic Response of Secondary Systems due to Uncertain Soil Properties, Eng. Struct., 24(12), pp.1601~1613. https://doi.org/10.1016/S0141-0296(02)00103-7
  3. Chen, Y., Soong, T.T. (1988) Seismic Response of Secondary Systems, Eng. Struct., 10(4), pp.218~228. https://doi.org/10.1016/0141-0296(88)90043-0
  4. Cho, S.G., Gupta, A. (2020) Generation of Floor Response Spectra Considering Coupling Effect of Primary and Secondary System, J. Earthq. Eng. Soc. Korea, 24(4), pp.179~187. https://doi.org/10.5000/EESK.2020.24.4.179
  5. Gupta, A. (1996) Seismic Response of Secondary Systems, PhD Thesis Dissertation, North Carolina State University, Raleigh, NC, USA.
  6. Gupta, A., Bose, M.K. (2017) Significance of Non-classical Damping in Seismic Qualification of Equipment and Piping, Nucl. Eng. & Des., 317, pp.90~99. https://doi.org/10.1016/j.nucengdes.2017.03.020
  7. Gupta, A., Gupta, A.K. (1994) New Developments in Coupled Seismic Analysis of Equipment and Piping, In: Proceedings of the 13th International Conference on Structural Mechanics in Reactor Technology, Porto Alegre, Brazil.
  8. Gupta, A., Gupta, A.K. (1998a) Missing Mass Effect in Coupled Analysis. I: Complex Modal Properties, J. Struct. Eng., 124(5), pp.490~495. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(490)
  9. Gupta, A., Gupta, A.K. (1998b) Missing Mass Effect in Coupled Analysis. II: Residual Response, J. Struct. Eng., 124(5), pp.496~500. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(496)
  10. Gupta, A.K. (1984) Seismic Response of Multiply Connected MDOF Primary and MDOF Secondary Systems, Nucl. Eng. & Des., 81(3), pp.385~394. https://doi.org/10.1016/0029-5493(84)90284-X
  11. Jung, K., Kwag, S., Choi, I.K., Eem, S. (2020) Analysis of Seismic Response due to the Dynamic Coupling between a Primary Structure and Secondary System, J. Earthq. Eng. Soc. Korea, 24(2), pp.87~93. https://doi.org/10.5000/EESK.2020.24.2.087
  12. KAERI (2019) Advanced Seismic Margin Assessment Methodology and Earthquake Response System for Beyond Design Basis Earthquakes, TRKO202000001912, Research Report, Korea Atomic Energy Research Institute. (URL: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202000001912)
  13. Kim, J.H., Park, J.H., Choi, I.K. (2013) Evaluation of the Seismic Response Considering Site Effect and Nonlinear Structural Behavior, KAERI/TR-5369/2013, Korea Atomic Energy Research Institute.
  14. Korea Electronic Power Corporation (1992) Seismic Analysis of Containment Building, ULCHIN Nuclear Power Plant Units 3&4, Report Number 9-310-C455-001.
  15. Kwag, S., Eem, S., Park, J., Choi, I.K. (2020) Sampling-based Approach for Seismic Probabilistic Risk Assessment, J. Comput. Struct. Eng. Inst. Korea, 33(2), pp.129~136. https://doi.org/10.7734/COSEIK.2020.33.2.129
  16. Kwag, S., Gupta, A. (2018) Computationally Efficient Fragility Assessment using Equivalent Elastic Limit State and Bayesian Updating, Comput. & Struct., 197, pp.1~11. https://doi.org/10.1016/j.compstruc.2017.11.011
  17. Papageorgiou, A.V., Gantes, C.J. (2010) Decoupling Criteria for Inelastic Irregular Primary/Secondary Structural Systems subject to Seismic Excitation, J. Eng. Mech., 136(10), pp.1234~1247. https://doi.org/10.1061/(asce)em.1943-7889.0000166
  18. Pardalopoulos, S.I., Pantazopoulou, S.J. (2015) Seismic Response of Nonstructural Components attached on Multistorey Buildings, Earthq. Eng. & Struct. Dyn., 44(1), pp.139~158. https://doi.org/10.1002/eqe.2466
  19. Park, J., Choi, I.K. (2015) Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment, J. Comput. Struct. Eng. Inst. Korea, 28(3), pp.241~248. https://doi.org/10.7734/COSEIK.2015.28.3.241
  20. Singh, M.P., Suarez, L.E. (1987) Seismic Response Analysis of Structure-Equipment Systems with Non-Classical Damping Effects, Earthq. Eng. & Struct. Dyn., 15(7), pp.871~888. https://doi.org/10.1002/eqe.4290150708
  21. Suarez, L.E., Singh, M.P. (1987) Seismic Response of SDF Equipment-structure System, J. Eng. Mech., 113(1), pp.16~30. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:1(16)
  22. USNRC (2007a) P-CARES: Probabilistic Computer Analysis for Rapid Evaluation, NUREG/CR-6922, p.158.
  23. USNRC (2007b) Seismic System Analysis, Standard Review Plan 3.7.2, Rev. 3, NUREG-0800, US Nuclear Regulatory Commission.
  24. Xu, J., DeGrassi, G. (2000) Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems, Division of Engineering Technology, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission.