DOI QR코드

DOI QR Code

The convergence effect of phenylephrine, isoprenaline and prazosin on vascular contractility

혈관 수축성에 대한 phenylephrine, isoprenaline 및 prazosin의 융합성 조절 효과

  • Je, Hyun Dong (Dept. of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Min, Young Sil (Dept. of Pharmaceutical Science, Jungwon University)
  • 제현동 (대구가톨릭대학교 약학대학) ;
  • 민영실 (중원대학교 제약공학과)
  • Received : 2022.02.14
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

In the study, we endeavored to investigate the effect of phenylephrine, isoprenaline and prazosin on the tissue-specific vascular contractility and to determine the mechanism involved. There were few reports addressing the question whether thin or thick filament modulation is included in phenylephrine, isoprenaline and prazosin-induced regulation. We hypothesized that isoprenaline and prazosin play a role in tissue-dependent regulation of vascular contractility. Denuded arterial muscles of Sprague-Dawley male rats were suspended in organ baths and isometric tensions were transduced and recorded using isometric transducers and an automatic data acquisition system. Interestingly, sustained continuous contraction of thoracic and abdominal aorta. Furthermore, isoprenaline and prazosin together with phenylephrine inhibited transiently and persistently vasoconstriction of thoracic and abdominal aorta suggesting that additional mechanisms (e.g. decreased receptor density, chemical interaction, postreceptor signaling or distribution of agonists) might be included in the modulation of vascular contractility.

심혈관계 활성이 예측되는 phenylephrine, isoprenaline, prazosin의 단독 및 병용 투여에서 혈관수축 억제능을 관찰하였고 아직 보고가 빈약한 수축성 조절 기전에 대해 조직 선택적 조절 가설을 세워서 조사하였다. 내피가 손상된 혈관을 수조내에 현수시켰고 혈관에 의한 기계적 신호가 등장력 변환기에서 전기적 신호로 변환되어 생리측정기에 표시되었다. 내피가 손상된 혈관에서 phenylephrine은 조직에 비선택적으로 지속적인 수축을 유지하였고 phenylephrine과 병용된 isoprenaline은 등척성 수축 실험에서 흉부, 복부 대동맥 등 조직에 비선택적으로 평활근에 대한 직접 작용으로 수축성을 일시적으로 감소시켰고 phenylephrine과 병용된 prazosin은 조직에 비선택적으로 평활근에 대한 직접 작용으로 수축성을 지속적으로 감소시켰다. 따라서 일부 조직에서 adrenergic beta receptor 밀도가 감소되거나 수용체 결합력이 감소되거나 수용체 결합 후 신호전달이 감소되거나 약물의 분포가 감소되어 isoprenaline이 phenylephrine의 지속적 작용에 대해 일시적으로 억제하고 prazosin이 지속적으로 억제하는 것으로 생각된다.

Keywords

Acknowledgement

This research was supported by the 2021 research year program funded by Jungwon University.

References

  1. L. J. Appel et al. (2003). Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA, 289(16), 2083-2093. DOI : 10.1001/jama.289.16.2083.
  2. J. P. Shrppard et al. (2020). Effect of Antihypertensive Medication Reduction vs Usual Care on Short-term Blood Pressure Control in Patients With Hypertension Aged 80 Years and Older: The OPIMISER Randomized Clinical Trial. JAMA, 323(20), 2039-2051. DOI : 10.1001/jama.2020.4871.
  3. A. P. Somlyo & A. V. Somlyo. (1994). Signal transduction and regulation in smooth muscle. Nature, 372(6503), 231-236. DOI : 10.1038/372231a0.
  4. P. P. Khin, T. S. Zaw & U. D. Sohn. (2017). Signal Transduction Underlying the Inhibitory Mechanism of Floxetine on Electrical Field Stimulation Response in Rat Ileal Smooth Muscle. Pharmacology, 99(5-6), 216-225. DOI : 10.1159/000449528
  5. A. P. Somlyo & A. V. Somlyo. (1998). From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand, 164(4), 437-448. DOI : 10.1046/j.1365-201X.1998.00454.x.
  6. K. P. Marconi, B. Bharathi, A. M. Venis, R. Raj, S. M. Amirtham & S. Subramani. (2020). Phenylephrine induces relaxation of longitudinal strips from small arteries of goat legs. PLoS One, 15(3), e0227316. DOI : 10.1371/journal.pone.0227316
  7. L. Yu, X. Jin, Y. Yang, N. Cui & C. Jiang. (2011). Rosiglitazone inhibits vascular KATP channels and coronary vasodilation produced by isoprenaline. Br J Pharmacol, 164(8), 2064-2072. DOI : 10.1111/j.1476-5381.2011.01539.x
  8. M. Uehata, T. Ishizaki, H. Satoh, T. Ono, T. Kawahara, T. Morishita, H. Tamakawa, K. Yamagami, J. Inui, M. Maekawa & S. Narumiya. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990-994. DOI : 10.1038/40187
  9. S. Sakurada, N. Takuwa, N. Sugimoto, Y. Wang, M. Seto, Y. Sasaki & Y. Takuwa. (2003). Ca2+-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res, 93(6), 548-556. DOI : 10.1161/01.RES.0000090998.08629.60
  10. T. Kitazawa, M. Masuo & A. P. Somlyo. (1991). G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci USA, 88(20), 9307-9310. DOI : 10.1073/pnas.88.20.9307
  11. A. Gohla, G. Schultz & S. Offermanns. (2000). Roles for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ Res, 87(3), 221-227. DOI : 10.1161/01.res.87.3.221.
  12. T. Leung, E. Manser, L. Tan & L. Lim. (1995). A novel serine/threonine kinase binding the Rasrelated RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem, 270(49), 29051-29054. DOI : 10.1074/jbc.270.49.29051
  13. T. Matsui et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. The EMBO J, 15(9), 2208-2216. PMID: 8641286 https://doi.org/10.1002/j.1460-2075.1996.tb00574.x
  14. W. G. Wier & K. G. Morgan. (2003). Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol, 150, 91-139. DOI : 10.1007/s10254-003-0019-8
  15. J. Niu et al. (2021). kappa-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling. Aging(Albany ny), 13(10), 14355-14371. DOI : 10.18632/aging.203050