DOI QR코드

DOI QR Code

Electrochmical Performance of Silicon/Carbon Anode Materials for Li-ion Batteries by Silicon Content

실리콘 함량에 따른 리튬이온전지용 실리콘/탄소 음극소재의 전기화학적 특성

  • Choi, Yeon-Ji (Department of Energy System, Soon Chun Hyang University) ;
  • Kim, Sung-Hoon (Department of Future Convergence Technology, Soon Chun Hyang University) ;
  • Ahn, Wook (Department of Energy System, Soon Chun Hyang University)
  • 최연지 (순천향대학교 에너지시스템학과) ;
  • 김성훈 (순천향대학교 미래융합기술학과) ;
  • 안욱 (순천향대학교 에너지시스템학과)
  • Received : 2022.03.14
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

It is necessarily required in developing Si-based anode materials for lithium ion batteries, and the related researches are actively working especially in Si-carbon composite material. On the other hand, the photovoltaic and semiconductor industries discard huge amount of Si resources, facing the environmental issue. In this study, recycled Si resource is adopted to obtain Si-carbon composite for LIB(Lithium-Ion Batteries). In order to improve high-capacity retention characteristics and cycle stability of a Si anode material for the LIB, two differenct composites having a mass ratio of silicon and pitch of 1:1 and 2:1 are synthesized and electrochemical characteristics of the anode material manufactured by simple self-assembly method. This result in excellent initial capacity with stable cycle life, and confirming the potential use of recycled Si material for LIB.

리튬이온전지의 음극소재 연구에서 실리콘 기반의 음극 활물질 개발이 필수적이며, 탄소기반의 실리콘-탄소 복합소재의 음극 적용연구가 활발히 진행되고 있다. 다른 한편으로 반도체와 태양광전지 산업에서 폐기물로 버려지는 실리콘 자원이 증가하여 환경적 문제를 일으키기도 한다. 본 연구에서는 리튬이온전지 음극소재로서 재활용된 실리콘을 이용하여 탄소와 복합화를 이루었으며, 실리콘 음극소재의 높은 용량 유지 특성 및 사이클 안정성 향상을 위하여 재활용된 실리콘과 피치의 함량을 조절하여 복합화의 최적화 조건을 확립하였다. 실리콘 : 피치의 질량비를 1 : 1 과 2 : 1을 가진 복합체를 간단한 자가조립 방법으로 복합화 하였으며, 석유계 피치로 코팅하여 제조된 음극소재의 전기화학적 특성을 비교 조사하는 연구를 수행하였다. 제조된 실리콘-탄소 복합소재는 충·방전 동안 발생되는 실리콘의 구조적 파괴를 방지하는 방법으로 우수한 초기용량과 사이클 안정성을 달성하였으며, 재활용 실리콘의 전극소재로서의 가능성을 확인하였다.

Keywords

Acknowledgement

This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004), and also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1C1C1010493)

References

  1. C. Y. Chen et al. (2020). The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery. Journal of Alloys and Compounds, 844. DOI : 10.1016/j.jallcom.2020.156025
  2. S. F. Gorman et al. (2019). The 'use-by date' for lithium-ion battery components. philosophical transactions of the royal society a, 377, 1-19. DOI : 10.1098/rsta.2018.0299
  3. Y. J. Jo & J. D. Lee. (2018). Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion batteries. Korean Chemical Engineering Research, 56(3), 320-326. DOI : 10.9713/kcer.2018.56.3.320
  4. S. H. Lee & J. D. Lee. (2018). Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch. Korean Chemical Engineering Research, 56(4), 561-567. DOI : 10.9713/kcer.2018.56.4.56
  5. T. K. Pham. et al.. (2021). Application of recycled Si from industrial waste towards Si/rGO composite material for long lifetime lithium-ion battery. Journal of Power Sources, 506, 1-8. DOI : 10.1016/j.jpowsour2021.230244
  6. D. Ma et al. (2014). Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters, 6, 347-358 DOI : 10.1007/s40820-014-0008-2
  7. C. Pang et al. (2015). A strategy for suitable mass production of a hollow Si@C nanostructured anode for lithium ion batteries. ROYAL SOCIETY OF CHEMISTRY, 5, 6782-6789. DOI : 10.1039/C4RA10849C
  8. A. Casimir et al. (2016). Silicon-based anodes forlithium-ion batteries : Effetiveness of materials synthesis and electrode preparation. Nano Energy, 27, 359-376. DOI : 10.1016/j.nanoen.2016.07.023
  9. S. J. Chae et al. (2019). Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angewandte Chemie International Edition, 59(1), 110-135. DOI : 10.1002/anie.201902085
  10. H. S. Kim et al. (2007). Carbon and composite lithium secondary battery anode. The journal of Korea Institute of Electronics Engineers, 34(12), 49-56. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00930585