DOI QR코드

DOI QR Code

3D-Printed Microhydrocyclone for Oil/Water Separation

유수분리를 위한 3D 프린팅 기술 기반의 마이크로하이드로사이클론

  • Kim, Joowan (School of Mechanical Engineering, Soongsil University) ;
  • Kim, Won Jin (School of Mechanical Engineering, Soongsil University) ;
  • Park, Seung (School of Mechanical Engineering, Soongsil University) ;
  • Park, Cherry (School of Mechanical Engineering, Soongsil University) ;
  • Yoo, Jung Heum (School of Mechanical Engineering, Soongsil University) ;
  • Ji, Inseo (School of Mechanical Engineering, Soongsil University) ;
  • Kang, Jeon-Woong (School of Mechanical Engineering, Soongsil University) ;
  • Kim, Taeyung (School of Mechanical Engineering, Soongsil University) ;
  • Hong, Jiwoo (School of Mechanical Engineering, Soongsil University)
  • 김주완 (숭실대학교 기계공학부) ;
  • 김원진 (숭실대학교 기계공학부) ;
  • 박승 (숭실대학교 기계공학부) ;
  • 박채리 (숭실대학교 기계공학부) ;
  • 유정흠 (숭실대학교 기계공학부) ;
  • 지인서 (숭실대학교 기계공학부) ;
  • 강전웅 (숭실대학교 기계공학부) ;
  • 김태영 (숭실대학교 기계공학부) ;
  • 홍지우 (숭실대학교 기계공학부)
  • Received : 2021.11.12
  • Accepted : 2021.12.14
  • Published : 2022.05.01

Abstract

Oil contained in domestic and industrial wastewater or marine spilled oil gives rise to severe environmental pollution issues such as water pollution and ecosystem destruction. The membrane filtration method as one of representative oil/water separation strategies has technological challenges such as membrane fouling and low separation rate. In this work, we devise a 3D-printed microhydrocyclone for oil/water separation by utilizing a digital lighting processing-based 3D printer. We demonstrate that the 3D-printed microhydrocyclone can effectively separate oil and water phases from oil-in-water emulsion.

생활 폐수나 산업 폐수에 포함된 오일이나 해양 유출유 등은 수질오염 및 생태계 파괴 등의 심각한 환경오염 문제를 야기하고 있다. 대표적인 유수분리기술인 필터(또는 멤브레인)를 사용하는 경우에 분리막의 파울링, 낮은 처리용량 등의 기술적 제약이 있다. 본 연구에서는 원심력을 이용하여 유체내의 입자상 물질이나 밀도가 다른 액체-액체 혼합물을 분리하는 장치인 하이드로사이클론의 장점을 활용하며, 동시에 분리 효율을 증대시키 위하여 고해상도의 3D 프린팅 기술을 도입하여 스케일 다운된 마이크로하이드로사이클론을 제작하였다. 본 연구에서 개발한 마이크로하이드로사이클론을 통해 탈이온수와 올리브유로 이루어져 있는 수중유상 에멀젼을 효과적으로 분리할 수 있음을 증명하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1F1A1066664). 또한, 2021년도 정부(교육부)의 재원으로 한국과학창의재단(2021년도 학부생 연구프로그램)의 지원을 받아 수행된 연구임.

References

  1. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J. and Mayes, A. M., "Science and Technology for Water Purification in the Coming Decades," Nature, 452(7185), 301-310(2008). https://doi.org/10.1038/nature06599
  2. Yuan, J., Liu, X., Akbulut, O., Hu, J., Suib, S. L., Kong, J. and Stellacci, F., "Superwetting Nanowire Membranes for Selective Absorption," Nat. Nanotechnol., 3(6), 332-336(2008). https://doi.org/10.1038/nnano.2008.136
  3. Chan, Y. J., Chong, M. F., Law, C. L. and Hassell, D. G., "A Review on Anaerobic-aerobic Treatment of Industrial and Municipal Wastewater," Chem. Eng. J., 155(1-2), 1-18(2009). https://doi.org/10.1016/j.cej.2009.06.041
  4. Singh, V., Purkait, M. K. and Das, C., "Cross-flow Microfiltration of Industrial Oily Wastewater: Experimental and Theoretical Consideration," Sep. Sci. Technol., 46(8), 1213-1223(2011). https://doi.org/10.1080/01496395.2011.560917
  5. Zhang, W., Liu, N., Cao, Y., Lin, X., Liu, Y. and Feng, L., "Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/water Mixture to Emulsion Separation," Adv. Mater. Interfaces, 4(10), 1600029(2017). https://doi.org/10.1002/admi.201700029
  6. Bradley, D., The Hydrocyclone, Pergamon Press, Oxford(1965).
  7. Young, G. A. B., Wakley, W. D., Taggart, D. L., Andrews, S. L. and Worrell, J. R., "Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions," J. Pet. Sci. Eng., 11(1), 37-50(1994). https://doi.org/10.1016/0920-4105(94)90061-2
  8. Klima, M. S. and Kim, B. H., "Dense-medium Separation of heavy-metal Particles from Soil Using a Wide-angle Hydrocyclone," J. Environ. Sci. Health Part A, 33(7), 1325-1340(1998). https://doi.org/10.1080/10934529809376791
  9. Patil, D. D. and Rao, T. C., "Classification Evaluation of Water Injected Hydrocyclone," Miner. Eng., 12(12), 1527-1532(1999). https://doi.org/10.1016/S0892-6875(99)00139-9
  10. Xu, P., Wu, Z., Mujumdar, A. S. and Yu, B., "Innovative Hydrocyclone Inlet Designs to Reduce Erosion-induced Wear in Mineral Dewatering Processes," Dry. Technol., 27(2), 201-211(2009). https://doi.org/10.1080/07373930802603433
  11. Fakhru'l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S. and Abidin, Z. Z., "Review of Technologies for Oil and Gas Produced Water Treatment," J. Hazard. Mater., 170(2-3), 530-551(2009). https://doi.org/10.1016/j.jhazmat.2009.05.044
  12. Oats, W. J., Ozdemir, O. and Nguyen, A. V., "Effect of Mechanical and Chemical Clay Removals by Hydrocyclone and Dispersants on Coal Flotation," Miner. Eng., 23(5), 413-419(2010). https://doi.org/10.1016/j.mineng.2009.12.002
  13. Tsolaki, E. and Diamadopoulos, E., "Technologies for Ballast Water Treatment: A Review," J. Chem. Technol. Biotechnol., 85(1), 19-32(2010). https://doi.org/10.1002/jctb.2276
  14. Li, J. P., Yang, X. J., Ma, L., Yang, Q., Zhang, Y. H., Bai, Z. S., Fang, X. C., Li, L. Q., Gao, Y. and Wang, H. L., "The Enhancement on the Waste Management of Spent Hydrotreating Catalysts for Residue Oil by a Hydrothermal-hydrocyclone Process," Catal. Today, 271, 163-171(2016). https://doi.org/10.1016/j.cattod.2015.08.037
  15. Wang, B. and Yu, A. B., "Numerical Study of Particle-fluid Flow in Hydrocyclones with Different Body Dimensions," Miner. Eng., 19(10), 1022-1033(2006). https://doi.org/10.1016/j.mineng.2006.03.016
  16. Bhardwaj, P., Bagdi, P. and Sen, A. K., "Microfluidic Device Based on a Micro-hydrocyclone for Particle-liquid Separation," Lab Chip, 11(23), 4012-4021(2011). https://doi.org/10.1039/c1lc20606k
  17. Syed, M. S., Rafeie, M., Henderson, R., Vandamme, D., Asadnia, M. and Warkiani, M. E., "A 3D-printed Mini-hydrocyclone for High Throughput Particle Separation: Application to Primary Harvesting of Microalgae," Lab Chip, 17(14), 2459-2469(2017). https://doi.org/10.1039/C7LC00294G
  18. Han, J. Y., Krasniqi, B., Kim, J., Keckley, M. and DeVoe, D. L., "Miniaturization of Hydrocyclones by High-Resolution 3D Printing for Rapid Microparticle Separation," Adv. Mater. Technol., 5(4), 1901105(2020). https://doi.org/10.1002/admt.201901105
  19. Young, G. A. B., Wakley, W. D., Taggart, D. L., Andrews, S. L. and Worrell, J. R., "Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions," J. Pet. Sci. Eng., 11(1), 37-50(1994). https://doi.org/10.1016/0920-4105(94)90061-2