DOI QR코드

DOI QR Code

정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation

  • 장순민 (경희대학교 기계공학과) ;
  • 라윤상 (경희대학교 기계공학과) ;
  • 조수민 (경희대학교 기계공학과) ;
  • 감동익 (경희대학교 기계공학과) ;
  • 신동진 (경희대학교 기계공학과) ;
  • 이희규 (경희대학교 기계공학과) ;
  • 최부희 (경희대학교 기계공학과) ;
  • 이세혁 (경희대학교 기계공학과) ;
  • 차경제 (한국생산기술연구원 스마트제조기술연구그룹) ;
  • 서경덕 (원광대학교 기계공학과) ;
  • 김형우 (원광대학교 기계설계공학과) ;
  • 최동휘 (경희대학교 기계공학과)
  • Jang, Sunmin (Department of Mechanical Engineering, Kyung Hee University) ;
  • Ra, Yoonsang (Department of Mechanical Engineering, Kyung Hee University) ;
  • Cho, Sumin (Department of Mechanical Engineering, Kyung Hee University) ;
  • Kam, Dongik (Department of Mechanical Engineering, Kyung Hee University) ;
  • Shin, Dongjin (Department of Mechanical Engineering, Kyung Hee University) ;
  • Lee, Heegyu (Department of Mechanical Engineering, Kyung Hee University) ;
  • Choi, Buhee (Department of Mechanical Engineering, Kyung Hee University) ;
  • Lee, Sae Hyuk (Department of Mechanical Engineering, Kyung Hee University) ;
  • Cha, Kyoung Je (Smart Manufacturing Technology R&D Group, KITECH) ;
  • Seo, Kyoung Duck (Department of Mechanical Engineering, Wonkwang University) ;
  • Kim, Hyung Woo (Department of Mechanical Design Engineering, Wonkwang University) ;
  • Choi, Dongwhi (Department of Mechanical Engineering, Kyung Hee University)
  • 투고 : 2021.09.01
  • 심사 : 2021.10.01
  • 발행 : 2022.05.01

초록

휴대형, 착용형 전자기기의 활용범위가 넓어지면서, 무겁고 부피가 큰 고체 배터리의 한계점이 드러나고 있으며, 배터리의 역할을 일부 분담할 수 있는 소형 에너지 수확 장치의 개발이 시급한 가운데, 일상 생활 속에서 버려지는 에너지원에 대한 활용도가 중요해지고 있다. 정전발전 기술은 두 물질 표면의 접촉과 분리에 의해 발생되는 마찰대전 효과와 전하유도 현상에 기반해 전기를 생산할 수 있기 때문에, 주변환경에 존재하는 역학적, 기계적 에너지원을 복잡한 중간과정을 거치지 않고도 효과적으로 수확할 수 있다는 장점을 지니고 있다. 인간의 주변환경에 존재하는 에너지원 중에서도 바람에너지는 자연환경에 존재하는 무한한 친환경 에너지원으로써, 그 수확과 활용에 대한 관심이 높은 신재생 에너지원이다. 본 연구에서는 정전발전 기술을 기반으로 하여 이러한 바람에너지의 효과적 수확을 위한 에너지 수확 장치의 최적화와 정전발전 기술의 활용도를 극대화할 수 있는 활용 방안에 대해 분석하였다. Fluttering film을 이용한 Natural wind based Fluttering TENG (NF-TENG)를 개발하였으며, 바람에너지의 효과적 수확을 위해 설계 최적화를 진행하였다. 또한 낮은 전류와 높은 전압을 발생시키는 TENG의 고유 특징을 부각하여 안전한 고전압 발생 시스템을 개발하여 고전압을 요구하는 분야에서의 활용 방안을 제안하였다. 따라서 본 연구에서 도출한 연구 결과는 정전발전 기술을 기반으로 하는 소형 에너지 수확장치를 이용해 일상생활 속에서 버려지는 바람에너지를 수확하여 고전압이 필요한 분야에서 폭넓게 활용할 수 있는 방법으로써 큰 잠재력을 보여줌을 시사한다.

As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1C1C1005846, 2020R1I1A1A01073785).

참고문헌

  1. Singh, G. K., "Solar Power Generation by PV (photovoltaic) Technology: A Review," Energy, 53, 1-13(2013). https://doi.org/10.1016/j.energy.2013.02.057
  2. Selvakumar, N., Manikandanath, N., Biswas, A. and Barshilia, H. C., "Design and Fabrication of Highly Thermally Stable HfMoN/ HfON/Al2O3 Tandem Absorber for Solar Thermal Power Generation Applications," Sol. Energy Mater. Sol. Cells, 102, 86-92(2012). https://doi.org/10.1016/j.solmat.2012.03.021
  3. He, W., Zhang, G., Zhang, X., Ji, J., Li, G. and Zhao, X., "Recent Development and Application of Thermoelectric Generator and Cooler," Appl. Energy, 143, 1-25(2015). https://doi.org/10.1016/j.apenergy.2014.12.075
  4. Gu, L., Liu, J., Cui, N., Xu, Q., Du, T., Zhang, L., Wang, Z., Long, C. and Qin, Y., "Enhancing the Current Density of a Piezoelectric Nanogenerator Using a Three-dimensional Intercalation Electrode," Nat. Commun., 11(1), 1-9(2020). https://doi.org/10.1038/s41467-019-13993-7
  5. Chen, G., Tang, L., Yang, Z., Tao, K. and Yu, Z., "An Electret-based Thermoacoustic-electrostatic Power Generator," Int. J. Energy Res., 44(3), 2298-2305(2020). https://doi.org/10.1002/er.5019
  6. Fan, F.-R., Tian, Z.-Q. and Wang, Z. L., "Flexible Triboelectric Generator," Nano energy, 1(2), 328-334(2012). https://doi.org/10.1016/j.nanoen.2012.01.004
  7. Yun, Y., Jang, S., Cho, S., Lee, S. H., Hwang, H. J. and Choi, D., "Exo-shoe Triboelectric Nanogenerator: Toward High-performance Wearable Biomechanical Energy Harvester," Nano Energy, 80, 105525(2021). https://doi.org/10.1016/j.nanoen.2020.105525
  8. Choi, S., Cho, S., Yun, Y., Jang, S., Choi, J. H., Ra, Y., La, M., Park, S. J. and Choi, D., "Development of a High-Performance Handheld Triboelectric Nanogenerator with a Lightweight Power Transmission Unit," Adv. Mater. Technol., 5(4), 2000003(2020). https://doi.org/10.1002/admt.202000003
  9. Wang, Y., Wang, J., Xiao, X., Wang, S., Kien, P.T., Dong, J., Mi, J., Pan, X., Wang, H. and Xu, M., "Multi-functional Wind Barrier Based on Triboelectric Nanogenerator for Power Generation, Self-powered Wind Speed Sensing and Highly Efficient Windshield," Nano Energy, 73, 104736(2020). https://doi.org/10.1016/j.nanoen.2020.104736
  10. Chen, S., Gao, C., Tang, W., Zhu, H., Han, Y., Jiang, Q., Li, T., Cao, X. and Wang, Z., "Self-powered Cleaning of Air Pollution by Wind Driven Triboelectric Nanogenerator," Nano Energy, 14, 217-225(2015). https://doi.org/10.1016/j.nanoen.2014.12.013
  11. Yun, Y., La, M., Cho, S., Jang, S., Choi, J. H., Ra, Y., Kam, D., Park, S. J. and Choi, D., "High Quality Electret Based Triboelectric Nanogenerator for Boosted and Reliable Electrical Output Performance," Int. J. of Precis. Eng. Manuf.-Green Technol., 8(1), 125-137(2021). https://doi.org/10.1007/s40684-020-00245-z
  12. Leung, W. W. F. and Sun, Q., "Electrostatic Charged Nanofiber Filter for Filtering Airborne Novel Coronavirus (COVID-19) and Nano-aerosols," Sep. Purif. Technol., 250, 116886(2020). https://doi.org/10.1016/j.seppur.2020.116886
  13. Shimizu, K., Fukunaga, H. and Blajan, M., "Biomedical Applications of Atmospheric Microplasma," Curr. Appl. Phys., 14, S154-S161(2014). https://doi.org/10.1016/j.cap.2013.11.055
  14. Giacometti, J., Ferreira, G. L. and Gross, B., A Summary of Corona Charging Methods. in 6th International Symposium on Electrets (ISE 6), Proceedings. 1988. IEEE.