DOI QR코드

DOI QR Code

Ethanol-pretreated Drying of (+)-dihydromyricetin for Removal of Residual Solvents

잔류 용매 제거를 위한 (+)-dihydromyricetin의 에탄올 전처리 건조

  • Lee, Hee-Gun (Center for Future Sustainable Technology, Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Center for Future Sustainable Technology, Department of Chemical Engineering, Kongju National University)
  • 이희건 (공주대학교 화학공학부, 미래지속가능기술연구소) ;
  • 김진현 (공주대학교 화학공학부, 미래지속가능기술연구소)
  • Received : 2021.12.02
  • Accepted : 2022.01.04
  • Published : 2022.05.01

Abstract

In this study, a drying method that can effectively remove residual solvent from (+)-dihydromyricetin was developed. Residual acetone concentration was efficiently removed below ICH-specified value (5,000 ppm) by simple rotary evaporation with ethanol pretreatment. In addition, the residual ethanol met the ICH-specified value (5,000 ppm) by simple rotary evaporation through the addition of water, and the residual moisture also met the specified value (<4%) for active pharmaceutical ingredients. At all the drying temperature (35, 45, and 55 ℃), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Removal of residual solvent by ethanol pretreatment was shown to be related to high vapor pressure of acetone-ethanol mixture and hydrogen bonding between acetone and ethanol.

본 연구에서는 정제된(+)-dihydromyricetin로부터 잔류 용매를 효과적으로 제거할 수 있는 건조 방법을 개발하였다. 에탄올 전 처리를 통한 회전 증발(rotary evaporation)에 의해 잔류 아세톤 농도를 ICH 규정치(5,000 ppm) 이하로 효율적으로 제거하였다. 또한 잔류 에탄올 역시 물 첨가를 통한 회전 증발로 ICH 규정치(5,000 ppm)를 충족시켰으며 잔류 수분 함량은 4% 이내였다. 모든 건조 온도(35, 45, 55 ℃)에서 잔류 용매는 건조 초기에 급격히 제거되었으며 건조 효율은 건조 온도가 높을수록 증가하였다. 건조 메커니즘 조사 결과, 에탄올 전 처리에 의한 잔류 용매 제거는 아세톤-에탄올 혼합물의 높은 증기압과 아세톤-에탄올 간의 수소 결합과 연관됨을 알 수 있었다.

Keywords

Acknowledgement

이 성과는정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(과제번호: NRF-2021R1A2C1003186).

References

  1. Li, F., Raza, A., Wang, Y.-W., Xu, X.-Q. and Chen, G.-H., "Optimization of Surfactant-mediated, Ultrasonic-assisted Extraction of Antioxidant Polyphenols from Rattan Tea (Ampelopsis grossedentata) Using Response Surface Methodology," Phcog. Mag., 13, 446-453(2017).
  2. Zheng, X. J., Xiao, H., Zeng, Z., Sun, Z. W., Lei, C., Dong, J. Z. and Wang, Y., "Composition and Serum Antioxidation of the Main Flavonoids from Fermented Vine Tea (Ampelopsis grossedentata)," J. Funct. Foods, 9, 290-294(2014). https://doi.org/10.1016/j.jff.2014.04.028
  3. Ji, S. B. and Kim, J. H., "Decreasing Particle Size of (+)-dihydromyricetin Using Hydrophilic Polymer in Fractional Precipitation," Korean J. Chem. Eng. Res., 56, 370-375(2018).
  4. Du, Q., Cai, W., Xia, M. and Ito, Y., "Purification of (+)-dihydromyricetin from Leaves Extract of Ampelopsis grossedentata Using High-speed Countercurrent Chromatograph with Scale-up Triple Columns," J. Chromatogr. A, 973, 217-220(2002). https://doi.org/10.1016/S0021-9673(02)01092-0
  5. Yohsikawa, M. and Murakami, T., "Four Methyl-migrated 16, 17-seco-dammarane Triterpene Glycosides from Chines Natural Medicine, Hoveniae Semen Seu Fructus, the Seeds and Fruit of Hovenia dulcis Thunb," Chem. Pharm. Bull., 44, 1736-1743(1996). https://doi.org/10.1248/cpb.44.1736
  6. Song, X. and Ren, Q., "Preparation and Application of Dihydromyricetin," CN Patent No. 1,288,892 (2001).
  7. Zhang, Y., "Process for Preparing Dihydromyricetin from Porcelain Ampelopsis" CN Patent No. 1,393,443 (2003). ,
  8. Lee, K. H. and Kim, J. H., "Development and Optimization of Fractional Precipitation for the Pre-purification of (+)-dihydromyricetin," Biotechnol. Bioprocess Eng., 13, 274-278(2008). https://doi.org/10.1007/s12257-007-0199-1
  9. Lim, M. K. and Kim, J. H., "Improvement of the Fractional Precipitation Process for the Purification of (+)-dihydromyricetin," Korean J. Microbiol. Biotechnol., 42, 25-31(2014). https://doi.org/10.4014/kjmb.1312.12002
  10. Oh, S. R. and Kim, J. H., "Ultrasound-based Fractional Precipitation for the Purification of (+)-dihydromyricetin," Korean J. Chem. Eng., 38, 480-484(2021). https://doi.org/10.1007/s11814-020-0734-8
  11. ICH guidance Q3C impurities: Residual solvents, Fed. Regist. 62, 67377-67388(1997).
  12. Yoon, T. H. and Kim, J. H., "Development of Drying Process for Removal of Residual Solvent from Crystalline Vancomycin and Kinetic and Thermodynamic Analysis Thereof,"Biotechnol. Bioprocess Eng., 25, 777-786(2020). https://doi.org/10.1007/s12257-020-0290-4
  13. Lee, J. Y. and Kim, J. H., "Removal of Residual Methylene Chloride from Homoharringtonine by Pre-treatment with Ethanol," Process Biochem., 48, 1809-1813(2013). https://doi.org/10.1016/j.procbio.2013.08.002
  14. Lee, C. G. and Kim, J. H., "Improved Drying Method for Removal of Residual Solvents from Paclitaxel by Pre-treatment with Ethanol and Water," Process Biochem., 50, 1031-1036(2015). https://doi.org/10.1016/j.procbio.2015.02.018
  15. Kang, H. J. and Kim, J. H., "Removal of Residual Chloroform from Amorphous Paclitaxel Pretreated by Alcohol," Korean J. Chem. Eng., 36, 1965-1970(2019). https://doi.org/10.1007/s11814-019-0413-9
  16. Kang, H. J. and Kim, J. H., "Removal of Residual Toluene and Methyl Tertiary Butyl Ether from Amorphous Paclitaxel by Simple Rotary Evaporation with Alcohol Pretreatment," Biotechnol. Bioprocess Eng., 25, 86-93(2020). https://doi.org/10.1007/s12257-019-0337-6
  17. Thiygarajan, R. and Palaniappan, L., "Effect of Toluene in the Dipolar Interaction of Some Aliphatic Alcohols," Phys. Chem. Liq., 46, 336-371(2008).
  18. Thanusha, T. K., "Study on Thermodynamic Properties of MTBE/Alcohol Binary Mixtures Using Nonlinear Models and Molecular Interaction Using Spectroscopic Approach," M.S. Thesis, University Malaysia Pahang, Gambang, Malaysia (2017).
  19. Zhu, Z., Wang, L., Ma, Y., Wang, W. and Wang, Y., "Separating an Azeotropic Mixture of Toluene and Ethanol via Heatintegration Pressure Swing Distillation," Comput. Chem. Eng., 76, 137-149 (2005). https://doi.org/10.1016/j.compchemeng.2015.02.016
  20. Abu Al-Rub, F. A., Abdel-Jabbar, N., Darwish, N. and Ghanem, H., "Vapor-liquid Equilibrium of MTBE-methanol, MTBE-methanol-calcium Chloride and MTBE-methanol-lithium Chloride Mixtures," Chem. Eng. Technol., 25, 729-733(2002). https://doi.org/10.1002/1521-4125(20020709)25:7<729::AID-CEAT729>3.0.CO;2-B
  21. Ngoc, N. and Takaomi, K., "Ultrasound Stimulus Effect on Hydrogen Bonding in Networked Alumina and Polyacrylic Acid Slurry," Ultrason. Sonochem., 17, 186-192(2010). https://doi.org/10.1016/j.ultsonch.2009.04.007
  22. Venegas-Sanchez, J. A., Tagaya, M. and Kobayashi, T., "Ultrasound Stimulus Inducing Change in Hydrogen Bonded Crosslinking of Aqueous Polyvinyl Alcohols," Ultrason. Sonochem., 21, 295-309(2014). https://doi.org/10.1016/j.ultsonch.2013.06.011