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DOUBLE SERIES TRANSFORMS DERIVED FROM

FOURIER–LEGENDRE THEORY

John Maxwell Campbell and Wenchang Chu

Abstract. We apply Fourier–Legendre-based integration methods that

had been given by Campbell in 2021, to evaluate new rational double
hypergeometric sums involving 1

π
. Closed-form evaluations for diloga-

rithmic expressions are key to our proofs of these results. The single
sums obtained from our double series are either inevaluable 2F1( 4

5
)- or

2F1( 1
2

)-series, or Ramanujan’s 3F2(1)-series for the moments of the com-

plete elliptic integral K. Furthermore, we make use of Ramanujan’s finite
sum identity for the aforementioned 3F2(1)-family to construct creative

new proofs of Landau’s asymptotic formula for the Landau constants.

1. Introduction

Double series are often involved in important applications concerning many
of the main subfields within mathematical analysis. Thus, there is a much in
the way of effort that is put into research pursuits related to the computation
of double infinite series, and for transforming such summations into simpler or
more manageable expressions. In this article, we apply Fourier–Legendre-based
methods from [6] in novel ways that require the use of dilogarithm identities and
that provide us with new rational bivariate hypergeometric series for constants

involving 1
π and the famous golden ratio constant φ = 1+

√
5

2 , and for expressions

such as
√
2 ln2(

√
2±1)

π ; these new results are very much inspired by Ramanujan’s

famous rational series for constants involving 1
π [22] (cf. [3, pp. 352–364]).

Furthermore, we cleverly apply double series rearrangements in conjunction
with Ramanujan’s finite sum evaluation for the moments of the elliptic integral
K (see Section 2), providing us with a novel proof of Landau’s asymptotic
formula for the Landau constants.

Applications of orthogonal polynomials frequently are involved in computer
algebra-related and symbolic computation-related topics. In this regard, the
use of Fourier–Legendre (FL) expansions has been employed, over the years,
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in many notable research contributions concerning the study of closed-form
evaluations for infinite series, as in with the work of Wan et al. in this area
[10, 25–27]. The investigation into the use of Legendre polynomials in the
evaluation of bivariate hypergeometric series involving squared central binomial
coefficients was initiated in [7] and greatly improved upon in [6], in which the
moment formula for shifted Legendre polynomials is used in quite a variety of
ways in conjunction with the integration strategy put forth in [7], in order to
evaluate new families of series involving Ramanujan’s S-function

(1.1) S(m) =

∞∑
k=0

(
1

16

)k (2k
k

)2
k +m

=
1

m
3F2

[
1
2 ,

1
2 ,m

1,m+ 1

∣∣∣∣∣ 1

]
,

which admits the following identity (cf. [1]):

(1.2) S(m) =
16m

πm2
(
2m
m

)2 m−1∑
k=0

(
1

16

)k (
2k

k

)2

.

The double sums from [6] are all for constants involving 1
π2 , especially the

value ζ(3)
π2 , letting ζ(x) =

∑∞
n=1

1
nx denote the famous Riemann zeta function.

In contrast, within our current research contribution, our applications of the
double sum transformations from [6] yield new rational approximations for
constants involving 1

π but not 1
π2 . The proofs for the series evaluations in [6]

are given by direct applications of the double series transforms from [6]; in
contrast, our article is based on:

(1) Applying the techniques from [6] in conjunction with identities for a
special function that is not involved in [6] known as the dilogarithm
function; and

(2) Applying results from or inspired by [6] in conjunction both with series
rearrangements and Ramanujan’s finite sum identity for the S-function
in (1.1).

The double series that are put forth in Section 3 and that have, in large part,
motivated this article are such that we obtain infinite sums involving exotic

2F1( 4
5 )- or 2F1( 1

2 )-series by summing over one of the two indices involved in the
aforementioned double sums; in contrast, we always obtain 3F2(1)-expressions
by restricting the index sets in [6] to a single variable. Through our successful
applications of the series transforms from [6], we have shown how our sums
involving 2F1( 4

5 )- or 2F1( 1
2 )-functions can be expressed symbolically with ex-

pressions of the form

(1.3) ± Li2(z)∓ Li2(−z),

which, naturally, begs the question as to what values of z are such that (1.3)
admits a closed-form evaluation, letting the dilogarithm function be defined as



SERIES TRANSFORMS DERIVED FROM FOURIER–LEGENDRE THEORY 553

follows:

(1.4) Li2(z) =

∞∑
n=1

zn

n2
.

As noted in [9], one of the few known special values for the dilogarithm may
be obtained directly from the first Rogers–Ramanujan identity

(1.5)

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=0

(
1− q5n+1

)−1 (
1− q5n+4

)−1
,

as we later briefly review, in Section 3. Actually, out of all of the known
special values for the dilogarithm [30, pp. 6–7], the only values z that are such
that both Li2(z) and Li2(−z) are convergent according to the original series
definition for Li2 and also both admit closed-form evaluations are as follows:
z = ±1 and z = ± 1

φ . By applying techniques from [6] to reduce double series

to expressions involving (1.3) for a variable z, and by then setting z = φ−1, this
gives us new rational hypergeometric series for constants involving expressions

as in ln(φ)
π . As it turns out, there is actually a value z whereby the difference

in (1.3) admits a closed form but the separate terms in this difference do not
[19]. In particular, the closed form

(1.6) Li2

(√
2− 1

)
− Li2

(
1−
√

2
)

=
π2

8
+

1

2
ln2
(√

2 + 1
)
− ln2

(√
2− 1

)
proved in [19] is to be of much utility in this article.

2. Three related motivating examples

Since our present article is based on further applications of the series and
methods from [6], it seems worthwhile to recall the main motivating example
highlighted in [6]:

(2.1)
14ζ(3)

π2
=
∑
m,n≥0

(
1

16

)m+n (2m
m

)2(2n
n

)2
m+ n+ 1

.

It is unexpected that the above identity is equivalent to the following one:

(2.2)
7ζ(3)

2π
=

∞∑
n=0

(
1

16

)n(
2n

n

)2 ∞∑
m=n

1

(2m+ 1)2
.

In fact, summing over m, we get from (2.1) that

14ζ(3)

π2
=

∞∑
n=0

(
1

16

)n(
2n

n

)2

S(n+ 1).

Then applying (1.2) to S(n+ 1), we can rewrite the double sum as

14ζ(3)

π2
=

∞∑
n=0

(
1

16

)n(
2n

n

)2

× 16n+1

π(n+ 1)2
(
2n+2
n+1

)2 n∑
k=0

(
1

16

)k (
2k

k

)2
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=
4

π

∞∑
k=0

(
1

16

)k (
2k

k

)2 ∞∑
n=k

1

(2n+ 1)2
,

which is clearly equivalent to (2.2).
Classical identities for reducing bivariate hypergeometric series (cf. Slater

[23, §8]) cannot be applied in any obvious or direct way to prove (2.1) or any of
the other closed-form formulas introduced in [6] or in our current article. We
recall that classical hypergeometric series [2, §2.5] are of the form

p+1Fp

[
a0, a1, . . . , ap

b1, b2, . . . , bp

∣∣∣∣∣ z
]

=

∞∑
n=0

(a0)n (a1)n · · · (ap)n
n! (b1)n (b2)n · · · (bp)n

zn,

making use of the usual notation/definitions for the Pochhammer symbol, the
Γ-function, etc. As in [6], we find it worthwhile to state that what is meant
by the phrase bivariate hypergeometric series dates back to Jacob Horn’s 1889
article [14], and that this term refers to double power sums

∑
m,n≥0 am,nx

myn

such that am+1,n/am,n and am,n+1/am,n form rational functions in m and n.
Before we proceed with our motivating examples in Sections 2.1–2.3 below,

it is worthwhile to define the above referred complete elliptic integral of the first
kind, which is to be later involved in our work. This function may be defined
as follows:

K(k) =
π

2
· 2F1

[
1
2 ,

1
2

1

∣∣∣∣∣ k2
]
.

The complete elliptic integral of the second kind may be defined as follows:

E(k) =
π

2
· 2F1

[
1
2 ,−

1
2

1

∣∣∣∣∣ k2
]
.

Although the proofs of the results from [6], which are the main source of inspi-
ration behind this current article, heavily rely on FL theory, our current work
does not directly involve FL expansions or Legendre polynomials.

2.1. A double series formula involving π and the golden ratio

Much of this article is inspired by the following result that we had discovered
and proved using the methods from [6], together with special values for Li2:

(2.3)

√
5π

3
− 3
√

5 ln2(φ)

π
=
∑
m,n≥0

(
1

16

)m(
1

5

)n (2m
m

)2(2n
n

)
m+ n+ 1

.

Setting aside our generalizations of this result and our applications inspired by
this same result, the equality in (2.3) is of interest in its own right, providing a
rational approximation to a constant involving 1

π that is of a noticeably different

appearance compared to the evaluations for Ramanujan’s series for 1
π , which
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do not involve logarithmic expressions or the golden ratio constant, as in the
following two equalities [22] (cf. [3, pp. 352–364]):

4

π
=

∞∑
n=0

(
1

2

)8n(
2n

n

)3

(6n+ 1),

16

π
=

∞∑
n=0

(
1

2

)12n(
2n

n

)3

(42n+ 5).

State-of-the-art computer algebra system (CAS) software cannot evaluate the
difficult double sum in (2.3), and, more generally, cannot evaluate any of the
series introduced in this article. By applying (1.2) to the sum over m ∈ N0 we
obtain the inevaluable expression

(2.4)

(
1

5

)n(
2n

n

)
1

n+ 1
3F2

[
1
2 ,

1
2 , n+ 1

1, n+ 2

∣∣∣∣∣ 1

]
.

It seems impossible to use this classical 3F2(1) identity to evaluate (2.3). For
example, by plugging in an equivalent form of the right-hand side of (1.2) into
(2.4) and summing over n ∈ N0, the triangular double sum that we obtain
seems to be just as intractable as the right-hand side of (2.3). By taking the
summand in (2.3) and summing over n ∈ N0, we obtain(

1

16

)m(
2m

m

)2
1

m+ 1
2F1

[
1
2 ,m+ 1

m+ 2

∣∣∣∣∣ 4

5

]
,

which also does not admit an explicit evaluation. There does not seem to be
much known about 2F1

(
4
5

)
-series, which further motivates our interest in (2.3).

Also, the moment formula whereby

S(r) =
2

π

∫ 1

0

zr−1K(z) dz

for <(r) > 0 (see [1]) cannot be used in any direct or obvious way to evaluate
(2.3).

2.2. A curious rational series formula involving ln2(
√

2± 1)/π

We later prove the following evaluation using the techniques from [6] along
with the dilogarithmic identity in (1.6):∑

m,n≥0

(
1

2

)4m+3n (2m
m

)2(2n
n

)
m+ n+ 1

(2.5)

=
2
√

2 ln2
(√

2 + 1
)

π
−

4
√

2 ln2
(√

2− 1
)

π
+

π√
2
.(2.6)

This identity is new and nontrivial in much the same way as in with the mo-
tivating example shown in the preceding subsection. The above evaluation
and its companion in (2.3) are of great interest to us, since these results show
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how polylogarithmic identities and the advances in FL theory from [6, 7] can
be applied together in novel, interesting ways. Taking the summand in (2.5)
and summing over m ∈ N0, we obtain an expression involving Ramanujan’s
S-function, and by instead summing over n ∈ N0, we obtain an inevaluable

2F1( 1
2 )-series.

2.3. A new proof of Landau’s asymptotic formula

As stated in [1], there is a great mathematical history concerning finite sums
of the form in (1.2). Expressions of the form

Gn =

n∑
i=0

(
1

16

)i(
2i

i

)2

are known as Landau’s constants [21, 29], which are used in many areas of
analysis, in large part due to the following famous inequality due to Landau
in 1913 [15]: If f(z) =

∑
k≥0 akz

k is a holomorphic function on the open unit

disk such that |f(z) < 1|, then ∣∣∣∣∣
n∑
k=0

ak

∣∣∣∣∣ ≤ Gn.
As described in [21], there has been much research devoted to asymptotic for-
mulas for the Landau constants, a subject that traces back to Landau’s famous
[29] result whereby

(2.7) Gn ∼
1

π
lnn;

see [29] for the original complex analysis-based proof of this result that in-
volves Cauchy’s theorem. Using the FL-based techniques from [6] together
with a summation technique based on Ramanujan’s S-function, we have come
to construct a dramatically different proof of Landau’s result in (2.7), which
we have formulated in an equivalent way, so that

(2.8)
2

π
= lim
n→∞

1

On

n∑
i=0

(
1

16

)i(
2i

i

)2

,

where On = 1 + 1
3 + · · · + 1

2n−1 denotes the nth odd harmonic number, with

On = H2n − Hn

2 for all n ∈ N0, and recalling the Euler–Mascheroni constant
being given by γ = limn→∞(Hn − lnn).

3. Main results and proofs

Hypergeometric functions have a role of much importance and utility in
mathematical physics. For example, there are direct and recent applications of
bivariate hypergeometric series within areas in physics such as conformal field
theory [18]; since there are also many applications of dilogarithmic identities
in conformal field theory [20,24,30], this motivates our interest in “combining”
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topics in the study of bivariate hypergeometric sums with that of Li2 identities.
The new results that we have discovered in this interdisciplinary endeavour, in
our successfully applying the transformation methods from [6] in conjunction
with dilogarithmic series and special values, are the emphasis of Sections 3.1–
3.3.

3.1. The first transformation theorem and applications of polyloga-
rithmic identities

Theorem 3.1 (Campbell [6], 2021). As in [6], let the sequence (fn)n≥0 be such
that the mapping g(x) given by the ordinary generating function (g.f.) for this
sequence is well-defined on (0, 1), and such that the conditions enumerated as
follows are all satisfied: The definite integral

(3.1)

∫ 1

0

K(
√
x)g(x) dx

is well-defined, and if we replace g(x) in the integrand shown in (3.1) with∑∞
n=0 fnx

n, and replace K(
√
x) by either its Maclaurin series or its shifted FL

series, summing over m ∈ N0, then the operators
∫ 1

0
· dx,

∑∞
n=0 ·, and

∑∞
m=0 ·

commute in either case and are such that the following series are convergent.
It then follows that

(3.2)
π

2

∑
m,n≥0

(
1

16

)m (
2m
m

)2
m+ n+ 1

· fn

must be equal to the following:

(3.3) 2
∑

m,n∈N0
n≥m

1

2m+ 1

(n!)2

(n−m)!(n+m+ 1)!
· fn.

An application of this theorem, together with a dilogarithmic form for a
bivariate hypergeometric series, as in (3.4), allow us to produce a full proof for
the motivating example highlighted in Section 2.1.

Recalling the Rogers–Ramanujan identity in (1.5), we let q = e−t, and we
then apply the operator limt→0+ t ln(·) to both sides of the resultant identity
[9] to give us a closed form for Li2 evaluated at the reciprocal of φ, namely
π2

10 − ln2 (φ); this is a perhaps prototypical instance of a polylogarithm ladder.
As we shall see, what is of especial significance, for our purposes, about this
particular dilogarithm value is due to the fact that the Li2 function evaluated
at the negative of the previously inputted constant 1

φ also admits a closed

form, with Li2
(
−φ−1

)
= −π

2

15 + 1
2 ln2 (φ) (cf. [30, p. 7]). We have discovered a

way of applying the transformation methods from [6] so as to determine new
rational hypergeometric series for expressions involving the difference Li2(z)−
Li2(−z) quotiented by π. However, despite the duplication formula Li2(z2) =
2(Li2(z) + Li2(−z)) [30, p. 9], there is no such identity for differences of the
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form ±Li2(z)∓Li2(−z). In order for both Li2(z) and Li2(−z) to admit a closed
form, we are left with the cases whereby z = ±1 or z = ±φ−1. This latter case,
together with the above theorem, lead us toward the following proof for the
first out of the motivating examples presented in Section 2.

Proof of (2.3): For a real parameter p, setting fn = pn
(
2n
n

)
in the above hyper-

geometric transform from [6], we obtain that

(3.4)
π

2

∑
m,n≥0

(
1

16

)m
pn
(
2m
m

)2(2n
n

)
m+ n+ 1

must equal

2
∑
m,n≥0

pn
(
2n
n

)
(n!)2

(2m+ 1)(n−m)!(m+ n+ 1)!
.

We may express
∞∑
n=m

pn
(
2n
n

)
(n!)2

(2m+ 1)(n−m)!(m+ n+ 1)!

as
pm

(2m+ 1)2
2F1

[
m+ 1

2 ,m+ 1

2m+ 2

∣∣∣∣∣ 4p

]
.

The above 2F1-function may be written as

−
22m−1

(√
1− 4p− 1

) (√
1− 4p+ 1

)−2m
p

,

which gives us that (3.4) equals

(3.5)
1−
√

1− 4p

p

∞∑
m=0

(
2
√
p

1 +
√

1− 4p

)2m
1

(2m+ 1)2
,

which we may symbolically compute by bisecting (1.4), giving us

−1
√
p
×

Li2

−2

√
p(√

1− 4p+ 1
)2
− Li2

2

√
p(√

1− 4p+ 1
)2
 ,

noting the appearance of an expression of the form ±Li2(z)∓Li2(−z). Setting
p = 1

5 , this gives us a proof for (2.3), thanks to the values of the Li2 function

evaluated at ±φ−1. �

By mimicking this proof, we may obtain closed forms for the infinite family
of double sums indicated below:∑

m,n≥0

(
1

16

)m(
1

5

)n (
2m
m

)2(2n
n

)
(m+ n+ 1)(2n− 1)

=
9 ln2(φ)

2
√

5π
− 3 ln(φ)

2π
− 1√

5π
− π

2
√

5
,
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∑
m,n≥0

(
1

16

)m(
1

5

)n (
2m
m

)2(2n
n

)
(m+ n+ 1)(2n− 3)

=
57 ln2(φ)

20
√

5π
− 33 ln(φ)

40π
− 31

60
√

5π
− 19π

60
√

5
.

Again, we come across inevaluable 2F1( 4
5 )-series or expressions involving the

S-function by summing over a single index, for each member of the above family.
Our evaluation of (3.4) as (3.5), together with a polylogarithmic identity from
[19], give us a proof for the motivating example in Section 2.2.

Proof of the equality of (2.5) and (2.6): By setting p = 1
8 in the equivalent

expressions in (3.4) and (3.5), this gives us that the double series in (2.5) is
equal to π

2 times

2
(√

2− 2
) (

Li2
(
1−
√

2
)
− Li2

(√
2− 1

))√
3− 2

√
2

,

which proves the motivating example from Section 2.2, thanks to the diloga-
rithm identity (1.6) due to Lima [19]. �

By mimicking this approach, we may also evaluate the following double
series:∑

m,n≥0

(
2m
m

)2(2n
n

)
24m+3n(m+ n+ 1)(2n− 1)

=
3 ln2

(√
2 + 1

)
2
√

2π
−

ln
(√

2 + 1
)

√
2π

−
ln
(√

2− 1
)

√
2π

+
ln
(√

2− 1
)

π
− 1√

2π
− 3π

8
√

2
,

∑
m,n≥0

(
2m
m

)2(2n
n

)
24m+3n(m+ n+ 1)(2n− 3)

=
29 ln2

(√
2 + 1

)
32
√

2π
+

7 ln
(√

2− 1
)

16π
− 17

48
√

2π
− 29π

128
√

2
.

By summing over a single index, for each of the members of the family of
sums shown above, either inevaluable 2F1( 1

2 )-series or summands involving the
S-function defined in (1.1) will show up.

3.2. The second transformation theorem and applications to double
series whose values involve the golden ratio

We now turn our attention to another transformation theorem.

Theorem 3.2 (Campbell [6], 2021). Let f : N0 → C and g(x) be the ordinary
g.f. for f . Assume that g is well-defined on (0, 1) such that

(3.6)

∫ 1

0

E(
√
x)g(x) dx
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is well-defined and satisfies the following: If we replace g(x) in the above in-
tegrand in (3.6) with the summation

∑∞
n=0 fnx

n, and if we replace E(
√
x) by

either its Maclaurin series or its shifted FL series, summing over m ∈ N0, then

the operators
∫ 1

0
· dx,

∑∞
n=0 ·, and

∑∞
m=0 · commute in either case and are such

that the following series are convergent. It then follows that the expression

−π
2

∑
m,n≥0

(
1

16

)m (
2m
m

)2
(2m− 1)(m+ n+ 1)

· fn

must equal the following:

−4
∑

m,n∈N0
n≥m

1

(2m− 1)(2m+ 1)(2m+ 3)

(n!)2

(n−m)!(n+m+ 1)!
· fn.

Applying this transform together with the special values for Li2 evaluated
at ±φ−1, we can derive∑

m,n≥0

(
1

16

)m(
1

5

)n (
2m
m

)2(2n
n

)
(2m− 1)(m+ n+ 1)

(3.7)

=
3
√

5 ln2(φ)

2π
− 15 ln(φ)

4π
−
√

5π

6
+

√
5

2π
,

and closed forms for the below series:∑
n≥0
m≥0

(
2m
m

)2(2n
n

)
16m5n(2m− 1)(m+ n+ 1)(2n− 1)

= − 3 ln2(φ)√
5π

+
21 ln(φ)

16π
+

π

3
√

5
+

√
5

8π
,

∑
n≥0
m≥0

(
2m
m

)2(2n
n

)
16m5n(2m− 1)(m+ n+ 1)(2n− 3)

= − 69 ln2(φ)

40
√

5π
+

61 ln(φ)

80π
+

23π

120
√

5
+

89

360
√

5π
.

Similarly, by applying the above theorem together with Lima’s polylogarith-
mic identity in (1.6), we can further evaluate not only the double series∑

m,n≥0

(
1

2

)4m+3n (
2m
m

)2(2n
n

)
(2m− 1)(m+ n+ 1)

in the following closed-form evaluation:

2
√

2 ln2
(√

2− 1
)

π
−
√

2 ln2
(√

2 + 1
)

π
+

2
√

2 ln
(√

2 + 1
)

π
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+
2
(
2 +
√

2
)

ln
(
2−
√

2
)

π
−
(
2 +
√

2
)

ln(2)

π
+

2
√

2

π
− π

2
√

2
,

but also an infinite family of generalizations of this result, in much the same
way as in with our above generalizations of (3.7).

3.3. Applications concerning Bonnet’s recursion identity

The primary hypergeometric transform from [6] that is derived from the
Bonnet recursion may be summarized as follows: For a reasonably well-behaved
function f from N0 to C that satisfies appropriate analogues of the conditions
in Theorems 3.1 and 3.2, we can show that

(3.8)
π

4

∑
m,n≥0

(
1

16

)m (
2m
m

)2
(m+ 1)(m+ n+ 2)

· fn

equals

4
∑
m,n≥0

2m+ 1

(2m− 1)2(2m+ 3)2
(n!)2

(n−m)!(n+m+ 1)!
· fn,

i.e., by using the Maclaurin series and the shifted FL expansion for E(
√
x) −

K(
√
x)+xK(

√
x); see [6, §3] for details. This can be used to prove the formula∑

m,n≥0

(
1

16

)m(
1

5

)n (
2m
m

)2(2n
n

)
(m+ 1)(m+ n+ 2)

= − 9
√

5 ln2(φ)

4π
+

15 ln(φ)

4π
+

√
5π

4
− 3
√

5

2π
.

Similarly, by the hypergeometric identity from [6, §3.1] concerning the g.f. for
the sequence of squared Catalan numbers, we can show that∑

n≥0
m≥0

(
2m
m

)2(2n
n

)
16m5n(m+ 1)2(m+ n+ 2)

= − 21
√

5 ln2(φ)

2π
+

45 ln(φ)

2π
+

7
√

5π

6
− 5
√

5

π
+ 2
√

5− 10,

and from the power series identity that is such that

∞∑
m=0

(
1

16

)m (
2m
m

)2
xm

(2m− 1)2
=

2(x− 1)K(
√
x)

π
+

4E(
√
x)

π
,

we may also evaluate series as in∑
m,n≥0

(
1

16

)m(
1

5

)n (
2m
m

)2(2n
n

)
(2m− 1)2(m+ n+ 1)

.

We may also apply the equality in (1.6) together with the above identities
derived from Bonnet’s recursion to prove new rational bivariate hypergeometric
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series for constants involving
√
2 ln2(

√
2±1)

π ; for the sake of brevity, we leave this
to the reader.

3.4. Novel proofs of Landau’s asymptotic formula

Setting fn = 1
n+1 for n ∈ N0 in (3.8), by restricting the resultant summand

to m ∈ N0, we obtain that the sum of

Γ2
(
m+ 1

2

)
(ψ0(m+ 2) + γ)

4Γ2(m+ 2)

for m ≥ 0 must equal the sum of all series given by

(3.9)
π

4(n+ 1)(n+ 2)
3F2

[
1
2 ,

1
2 , n+ 2

2, n+ 3

∣∣∣∣∣ 1

]
.

Rewriting this former sum as

π

4

∞∑
m=0

(
1

16

)m(
2m

m

)2
Hm+1

(m+ 1)2
,

and then splitting it into two with respect to Hm+1 = Hm + 1
m+1 , we can

evaluate it as π
4 ( 48

π −
64 ln 2
π ), taking into account the two known summation

formulae (cf. [5]):

∞∑
m=0

(
1

16

)m(
2m

m

)2
Hm

(m+ 1)2
= 16− 16 ln 2 +

32G

π
− 64 ln 2

π
,

4F3

[
1
2 ,

1
2 , 1, 1

2, 2, 2

∣∣∣∣∣ 1

]
=

48

π
− 32G

π
+ 16 ln 2− 16.

Equating the previously obtained value to (3.9) gives us that

∞∑
n=0

1

n+ 1

∞∑
m=0

(
1

16

)m(
2m

m

)2
1

(m+ 1)(m+ n+ 2)
=

48

π
− 64 ln 2

π
.

Applying partial fraction decomposition to the rational function factor of the
summand of the inner sum shown above, we can show that

(3.10)

∞∑
n=0

1

(n+ 1)2

∞∑
m=0

(
1

16

)m(
2m

m

)2
1

m+ n+ 2
=

64 ln 2

π
− 48

π
+

2π

3
,

where Ramanujan’s S-function emerges again. By means of (1.2), we may
reformulate (3.10) as

(3.11)

∞∑
n=0

16n(
2n
n

)2
(2n+ 1)2(2n+ 3)2

n∑
k=0

(
1

16

)k (
2k

k

)2

= 2 ln 2− π2

8
.



SERIES TRANSFORMS DERIVED FROM FOURIER–LEGENDRE THEORY 563

By interchanging the summation order, we may rewrite the last sum as

(3.12)
1

9

∞∑
k=0

( 1
2 )2k

(k!)2

∞∑
n=k

(n!)2

( 5
2 )2n

= 2 ln 2− π2

8
.

According to 1 = 2(n+ 3
2 )− 2(n+ 1), we can split the inner sum into two and

then evaluate them by telescoping:

∞∑
n=k

(n!)2

( 5
2 )2n

= 3

∞∑
n=k

(n!)2

( 3
2 )n( 5

2 )n
− 2

∞∑
n=k

n!(n+ 1)!

( 5
2 )2n

= 9

∞∑
n=k

{
((n+ 1)!)2

( 1
2 )n+1( 3

2 )n+1

− (n!)2

( 1
2 )n( 3

2 )n

}

+ 18

∞∑
n=k

{
(n+ 1)!(n+ 2)!

( 3
2 )2n+1

− n!(n+ 1)!

( 3
2 )2n

}
= 9

{
π

2
− (k!)2

( 1
2 )k( 3

2 )k

}
+ 18

{
π

4
− k!(k + 1)!

( 3
2 )2k

}
= 9π − 9(4k + 3)

(k!)2

( 3
2 )2k

.

By substituting this into (3.12), we get the equation

∞∑
k=0

{
π

( 1
2 )2k

(k!)2
− 2

2k + 1
+

(
2

2k + 1
− 4k + 3

(2k + 1)2

)}
= 2 ln 2− π2

8
.

Factorizing the difference in the parentheses into −1
(2k+1)2 , and evaluating with

respect to k by −π
2

8 , we find the simplified equation

∞∑
k=0

{
( 1
2 )2k

(k!)2
− 2

π(2k + 1)

}
=

2

π
ln 2,

noting that the series obtained by splitting the above summand according to
its two terms are non-convergent. Equivalently,

2

π
ln 2 = lim

m→∞

{m−1∑
k=0

(
1

16

)k (
2k

k

)2

− 2

π
Om

}
,

which is easily seen to give us the desired result in (2.8). �

Remark 3.3. Alternatively, starting from the formula (cf. [4] and [28])

∞∑
n=1

(
1

16

)n(
2n

n

)2
Hn

2n− 1
=

8 ln 2− 4

π
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we may rewrite it by interchanging the summation order as

∞∑
k=1

1

k

∞∑
n=k

(
1

16

)n(
2n

n

)2
1

2n− 1
=

8 ln 2− 4

π
.

Then by following the same procedure as for (3.10), the above equality can be
used to provide another proof of the asymptotic relation in (2.8).

4. Conclusion

The manipulations of the Kampé de Fériet function due very recently to
Li [17] produce bivariate hypergeometric series that, informally, bear a resem-
blance to many of our results, and it seems reasonable to suggest that there is
potential in the application of our methods with those from [17]. Holdeman’s
Legendre polynomial expansions of 2F1-functions, as given in [13], would likely
lead to interesting results if applied in conjunction with our techniques.

Since much of our article concerns the FL-derived techniques from [6] for
constructing rational approximations to constants involving 1

π2 , it seems worth-
while to build upon Levrie’s work [16] (see also [12]) on FL expansions in the
determination of rational sums for 1

π and 1
π2 , e.g., by using variants of the tech-

niques from [16] so as to form double series, and to then mimic the evaluation
strategies from Sections 3. More specifically, by making use of the Maclaurin

and the shifted FL expansions for
(√

1− x
√
x
)2k−1

in the case whereby k ∈ N,
we may devise analogues and variants of Theorems 3.1 and 3.2, by letting the
odd, positive, integer powers of

√
1− x

√
x be used in place of the complete

elliptic integrals.
Mimicking the setup and the proof of Theorem 3.1 given in [6], by starting

with an integral of the form∫ 1

0

K(x)

( ∞∑
n=0

x2nfn

)
dx

and by setting x =
√
y, we can show, under suitable conditions on the sequence

(fn : n ∈ N0), that the double series

π

2

∑
m,n≥0

(
1

16

)m(
2m

m

)2
1

2m+ 2n+ 1
· fn

equals ∑
m,n≥0

Γ2
(
n+ 1

2

)
(2m+ 1)Γ

(
n−m+ 1

2

)
Γ
(
n+m+ 3

2

) · fn,
which seems to be applicable in much the same way as Theorems 3.1 and 3.2,
and we encourage the exploration of applications of this transform. For exam-
ple, by setting fn = 1

(n+1)2 , and by then using binomial-harmonic evaluations
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introduced in [8] and [11], we obtain the following evaluation, where G denote
Catalan’s constant:

16 ln(2)− 8G− π2

6
=
∑
m,n≥0

Γ2
(
n+ 1

2

)
(2m+ 1)(n+ 1)2Γ

(
n−m+ 1

2

)
Γ
(
n+m+ 3

2

) .
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