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CO-UNIFORM AND HOLLOW S-ACTS OVER MONOIDS

Roghaieh Khosravi and Mohammad Roueentan

Abstract. In this paper, we first introduce the notions of superfluous

and coessential subacts. Then hollow and co-uniform S-acts are defined

as the acts that all proper subacts are superfluous and coessential, re-
spectively. Also it is indicated that the class of hollow S-acts is properly

between two classes of indecomposable and locally cyclic S-acts. More-
over, using the notion of radical of an S-act as the intersection of all

maximal subacts, the relations between hollow and local S-acts are in-

vestigated. Ultimately, the notion of a supplement of a subact is defined
to characterize the union of hollow S-acts.

1. Introduction

A submodule K of an R-module M is called superfluous (small), if the
equality N + K = M implies that N = M . The notion of small submodule
plays a fundamental role in the category of modules over rings. According to
[2], a non-zero module M is defined to be hollow if every submodule of M is
small (superfluous). The classical notion of hollow modules has been studied
extensively for a long time in many papers (see for example [3, 10]). In the
category of S-acts the notions of small (coessential) and superfluous subacts
are distinct which we define both as follows. For S-acts, first we refer the reader
to [7] and for preliminaries and basic results related monoids and S-acts. A
subact BS of AS is called large in AS if any homomorphism g : AS −→ CS

such that g|B is a monomorphism is itself a monomorphism. An extension B
of A with the embedding f : AS −→ BS is called an essential extension of A
if Imf is large in B.

The categorical dual of essential extension is called a coessential epimor-
phism which we recall as follows. Let S be a monoid. An act BS is called a
cover of an act AS if there exists an epimorphism f : BS → AS such that for
any proper subact CS of BS the restriction f |CS

is not an epimorphism. An
epimorphism with this property is called a coessential epimorphism. Indeed
it is defined in order to investigate X -perfect monoids as monoids over which
every right S-act has an X -cover, where X is an act property which is preserved
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under coproduct. More information about various kinds of cover of acts one
can see [4–6,8].

As a dual of large subact, we call BS a coessential (small) subact of AS if AS

is a cover of the Rees factor act AS/BS . According to the notion of superfluous
submodule, a subact BS of an S-act AS shall be called superfluous if the union
of BS with every proper subact of AS is also a proper subact of AS . In Section
2, We consider the properties of coessential and superfluous subacts. In [9], the
authors investigated uniform acts over a semigroup S, as S-acts that all their
non-zero subacts are large. In module theory, the dual notion of a uniform
module is that of a hollow module. In fact hollow and co-uniform modules
are equal. For S-acts, as we mentioned earlier, the notion of coessential and
superfluous are distinct, so we define co-uniform as a dual of uniform S-acts
and hollow S-acts with respect to the definition of hollow in module theory. In
Section 3, we characterize the classes of co-uniform and hollow acts as the acts
all proper subacts are coessential and superfluous respectively. In Section 4, we
investigate radical of an S-acts and local S-acts, and consider the relationship
between local and hollow S-acts. Finally, in Section 5, a supplement of a
subact and supplemented S-acts are introduced and using these notions to
characterize the union of hollow S-acts. The following lemma is clearly proved
which is needed in the sequel.

Lemma 1.1. If M is a maximal subact of a right S-act AS, then A/M is
finitely generated.

2. Coessential or superfluous subacts

In this section we introduce the notions of coessential and superfluous sub-
acts, and consider general properties of them.

Definition. A subact BS of an S-act AS is called

(i) coessential if the epimorphism π : AS −→ AS/BS is a coessential
epimorphism; in other words, AS is a cover of AS/BS . It is denoted
by B � A.

(ii) superfluous if BS ∪ CS 6= AS for each proper subact CS of AS , and it
is denoted by B ≤s A.

In the following lemma we present an equivalent condition for being coessen-
tial.

Lemma 2.1. A subact BS of an S-act AS is coessential if and only if for each
proper subact CS of AS, C ∩B 6= ∅ implies that C ∪B 6= A.

Proof. Necessity. Let CS be a proper subact of AS and C ∩ B 6= ∅. Since
π : AS −→ AS/BS is a coessential epimorphism, π|CS

is not an epimorphism,
which implies the existence of a ∈ AS such that [a] /∈ π(C). Now we claim that
a /∈ C ∪ B. Otherwise, either a ∈ C which means [a] ∈ π(C) or a ∈ B which
implies [a] = [b] ∈ π(C) for some b ∈ C ∩B. Thus C ∪B 6= A.
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Sufficiency. Let CS be a proper subact of AS . We show that for the epimor-
phism π : AS −→ AS/BS , π|CS

is not an epimorphism. If C ∩ B = ∅, clearly
for each b ∈ B we have [b] /∈ π(C). Otherwise, if C ∩ B 6= ∅, by assumption
C ∪ B 6= A. So we have [a] /∈ π(C) for each a ∈ A \ (C ∪ B). Therefore, π|CS

is not an epimorphism. �

In view of the previous lemma, it is obvious that being a superfluous subact
implies coessential. But the converse is not valid. For instance, let S be an
arbitrary monoid and AS = Θ

∐
Θ = {θ1, θ2}. Then {θ1} is coessential but

not superfluous.

Lemma 2.2. A coessential subact of each indecomposable right S-act is super-
fluous.

Proof. Suppose that B is a coessential subact of an indecomposable right S-act
AS and B ∪C = A for a subact C of A. If B ∩C = ∅, then A = B

∐
C which

contradicts with being indecomposable. So B ∩ C 6= ∅ and B ∪ C = A which
imply that C = A. Therefore, B is superfluous. �

Lemma 2.3. Suppose that AS , BS , CS , DS are S-acts such that DS ⊆ CS ⊆
BS ⊆ AS. The following hold.

(i) B ≤s A if and only if C ≤s A and B/C ≤s A/C.
(ii) If C ≤s B, then C ≤s A.
(iii) B ≤s A if and only if for each S-act XS and h : X −→ A, Im(h)∪B =

A implies Im(h) = A.
(iv) B/D ≤s A/D if and only if B/C ≤s A/C and C/D ≤s A/D.

Proof. (i) Necessity. The first part is obvious. Let K be a subact of A/C with
B/C ∪K = A/C. So D = {t ∈ A | [t] ∈ B/C} is a subact of AS and it is easily
checked that D ∪B = A. By assumption, D = A, and thus K = A/C.

Sufficiency. Let D be a subact of A and D∪B = A. So B/C ∪ (D∪C)/C =
A/C which implies (D ∪ C)/C = A/C. Then D ∪ C = A implies that D = A,
as desired.

Parts (ii) and (iii) are clear.
(iv) We only show the sufficiency. Suppose that (B/D) ∪ K = A/D for

some subact K of A/D. Get X = {t ∈ A | [t] ∈ K} which is clearly a subact
of AS . Then (B/C) ∪ ((X ∪ C)/C) = A/C. Since B/C ≤s A/C, we have
X ∪ C = A. So (C/D) ∪ K = A/D and since C/D ≤s A/D, K = A/D.
Therefore B/D ≤s A/D. �

Similar to the proof of the previous lemma, two following lemmas are easily
checked.

Lemma 2.4. The following hold for a monoid S.

(i) If CS ⊆ BS ⊆ AS and C � B, then C � A.
(ii) If CS ⊆ BS ⊆ AS and B � A, then C � A and B/C � A/C.
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(ii) If B � A (B ≤s A) and f : A −→ C is a monomorphism, then
f(B)� C (f(B) ≤s C).

Lemma 2.5. Let B,C be proper subacts of AS. Then B ∪C ≤s A if and only
if B ≤s A and C ≤s A.

Lemma 2.6. Suppose that Bi is a proper subact of Ai for each i ∈ I. The
following hold for a monoid S.

(i)
∐

i∈I Bi ≤s

∐
i∈I Ai if and only if Bi ≤s Ai for each i ∈ I.

(ii) If
∐

i∈I Bi �
∐

i∈I Ai, then Bi � Ai for each i ∈ I.

(iii) If Bi ≤s Ai (Bi � Ai) for each i ∈ {1, . . . , n}, then ∪i=n
i=1Bi ≤s ∪i=n

i=1Ai

(∪i=n
i=1Bi � ∪i=n

i=1Ai).

Proof. (i) Necessity. Suppose that
∐

i∈I Bi ≤s

∐
i∈I Ai. Fix j ∈ I and Dj a

subact of Aj such that Bj ∪Dj = Aj . Then D = (
∐

i 6=j Ai)
∐
Dj is a subact

of
∐

i∈I Ai and
∐

i∈I Bi ∪D =
∐

i∈I Ai. By assumption, D =
∐

i∈I Ai which
implies that Dj = Aj .

Sufficiency. Suppose that Bi ≤s Ai for each i ∈ I. Let D be a subact of∐
i∈I Ai such that

∐
i∈I Bi ∪D =

∐
i∈I Ai. Since Bi is a proper subact of Ai

for each i ∈ I, D =
∐

i∈I Di such that Di 6= ∅ is a subact of Ai. Obviously,
Bi ∪ Di = Ai for every i ∈ I and by assumption Di = Ai which gives that
D =

∐
i∈I Ai.

By a similar argument one can prove part (ii). Part (iii) is a straightforward
consequence of Lemmas 2.3 and 2.5. �

3. Co-uniform and hollow S-acts

In this section we study the classes of co-uniform and hollow S-acts.

Definition. An S-act AS is called co-uniform if all proper subacts of AS are
coessential, and AS is said to be hollow if every its proper subact is superfluous.

Obviously, hollow implies co-uniform, but the converse is not valid. Let S
be an arbitrary monoid. It is easily checked that, Θ

∐
Θ is co-uniform but not

hollow.

Proposition 3.1. Every factor act of a (co-uniform) hollow act is also (co-
uniform) hollow.

Proof. Let A be a hollow S-act and f : A −→ C an epimorphism. Let D be
a proper subact of C. We show that D ≤s C. Clearly, B = f−1(D) is also
a proper subact of A. So B ≤s A. Now, suppose that D ∪ E = C. It is
easily checked that B∪f−1(E) = A. So by assumption, f−1(E) = A, and thus
E = C. By a similar argument one could prove for co-uniform acts. �

Recall that an S-act AS is called locally cyclic if for all a, a′ ∈ AS there exists
a′′ ∈ A such that a, a′ ∈ a′′S. Every locally cyclic S-act is indecomposable and
every cyclic S-acts is locally cyclic.
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Proposition 3.2. Every locally cyclic right S-act is hollow, and consequently,
every cyclic right S-act is hollow.

Proof. Let AS be a locally cyclic S-act. If AS is simple, i.e., contains no
proper subacts, the result follows. Otherwise, let B be a proper subact of AS .
If C ∪ B = A for some proper subact C of A, take a ∈ A \ B and a′ ∈ A \ C.
So there exists a′′ ∈ A with a, a′ ∈ a′′S. Since A = B ∪ C, we have a′′ ∈ B or
a′′ ∈ C which implies that a ∈ B or a′ ∈ C, a contradiction. Thus C = A, and
B is a superfluous subact of AS . �

Theorem 3.3. A right S-act AS is hollow if and only if AS is an indecom-
posable co-uniform right S-act.

Proof. Necessity. Suppose that AS is hollow, and B,C are proper subacts of A
such that A = B

∐
C. Thus A = B∪C which means that B is not superfluous

subact of A, a contradiction.
In view of Lemma 2.2, the following the sufficiency is deduced. �

In general being indecomposable does not imply being hollow. For instance,

let AS be a cyclic S-act with a proper subact B, then A
∐B

A is indecomposable

but not hollow. In particular, for a proper right ideal I of a monoid S, S
∐I

S
is indecomposable but not hollow. So we have the following strict implications,

cyclic =⇒ locally cyclic =⇒ hollow =⇒ indecomposable.

In the following proposition we characterize co-uniform S-acts.

Proposition 3.4. Every co-uniform S-act A is indecomposable or A=A1

∐
A2,

where each Ai is simple.

Proof. Suppose that AS is a co-uniform decomposable S-act. Let A =
∐

i∈I Ai.
If |I| > 2, fix k 6= j ∈ I and put B = Ak

∐
Aj . So B ∪ (

∐
i6=j Ai) = A and

B ∩ (
∐

i 6=j Ai) = Ak 6= ∅. Then B is not coessential which is a contradiction.

Thus |I| = 2. Now, suppose that A = A1

∐
A2 such that A1 is not simple. Let

B1 be a proper subact of A1. Then B = B1

∐
A2 is a proper subact of A such

that B ∩ A1 6= ∅ and B ∪ A1 = A which means that B is not coessential, a
contradiction. Then A = A1

∐
A2 which A1, A2 are simple, as desired. �

Let S be an arbitrary monoid and A = Θ
∐

Θ
∐

Θ. Using Proposition 3.4,
A is not co-uniform. So for each arbitrary monoid S there exists a finitely
generated S-act which is not hollow or co-uniform.

An S-act A is said to be a uniserial S-act if every two subacts of A are
comparable with respect to inclusion. In the next theorem we characterize an
S-act all its subacts are hollow.

Theorem 3.5. For an S-act AS the following statements are equivalent.

(i) A is a uniserial S-act.
(ii) Every subact of A is hollow.
(iii) Every subact of A generated by two elements is hollow.
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Proof. The implications (i)⇒(ii) and (ii)⇒(iii) are obvious.
(iii)⇒(i) Let B and C be subacts of A and let B * C. Then there exists an

element x ∈ B\C. To show that C ⊆ B, suppose that y ∈ C. Put N = xS∪yS.
If N = yS, then xS ⊆ N = yS ⊆ C. So x ∈ C, a contradiction. Hence yS
is a proper subact of N , and since N is hollow, then N = xS. Therefore,
yS ⊆ N = xS ⊂ B which implies that y ∈ B, and so C ⊆ B. �

Proposition 3.6. The following hold for a monoid S.

(i) Every hollow S-act with a minimal generating set is cyclic.
(iii) Every finitely generated hollow S-act is cyclic.

Proof. It suffices to prove part (i). Let AS be a right S-act with a minimal
generating set {ai | i ∈ I}. In contrary suppose that |I| > 1, and fix i ∈
I. Then aiS ∪ (∪j 6=iajS) = A, and since AS is hollow, AS = ∪j 6=iajS, a
contradiction. �

Recall that a monoid S satisfies condition (A) if all right S-acts satisfy
the ascending chain condition for cyclic subacts. In [5] it is shown that a
monoid S satisfies condition (A) if and only if every locally cyclic S-act is
cyclic, equivalently, every right S-act contains a minimal generating set. Now,
using this fact and the previous proposition we deduce the following result as
a generalization of that result in [5].

Lemma 3.7. A monoid S satisfies condition (A) if and only if every hollow
S-act is cyclic.

We conclude this section considering the cover of hollow S-acts. In [5], it is
shown that a cover of a locally cyclic right S-act is indecomposable. Now, we
extend this to the following result.

Lemma 3.8. Each cover of a hollow S-act is indecomposable.

Proof. Let AS be a hollow S-act and f : DS → AS a coessential epimorphism.
Suppose that D =

∐
i∈I Di such that each Di is indecomposable. In contrary,

suppose that |I| > 1 and choose i 6= j ∈ I. Since f |D\Di
is not an epimorphism,

f(D\Di) is a proper subact of A and f(D\Di)∪f(D\Dj) = A. Now since AS

is hollow, f(D \Dj) = A, and so f |D\Dj
is an epimorphism, a contradiction.

Therefore D is indecomposable. �

The following corollary is a straightforward result of the previous lemma.

Corollary 3.9. For a monoid S the following hold.

(i) Every projective cover of a hollow S-act is cyclic.
(i) Every strongly flat (condition (P)) cover of a hollow S-act is locally

cyclic.
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4. The relation between hollow and radical of S-acts

In this section we consider local S-acts and the radical of an S-act. We also
discuss the relationship between local and hollow S-acts.

Definition. A right S-act is called local if it contains exactly one maximal
subact. A monoid S is also called right (left) local if it contains exactly one
maximal right (left) ideal.

The set of maximal subacts of a right S-act AS is denoted by Max(A).

Lemma 4.1. Every cyclic right S-act is simple or local.

Proof. Suppose that A = aS is cyclic, and AS is not simple. By using Zorn’s
Lemma, Max(A) 6= ∅. Now, suppose that M 6= N are maximal subacts of A.
Then M ∪N = A implies that a ∈ M or a ∈ N , and so N = A or M = A, a
contradiction. Thus A is local. �

Now, we deduce the following remark which was also discussed in [1].

Remark 4.2. Every monoid S is a group or right local. Indeed the set

{s ∈ S | s is not right invertible}

is either empty or the unique maximal right ideal of S. Then the local monoid
property is left-right symmetric. Thus we briefly call it a local monoid.

The following theorem establishes a relation to hollow S-acts with local and
cyclic S-acts.

Theorem 4.3. Let AS be a right S-act. Then the following are equivalent:

(i) AS is a hollow right S-act and Max(A) 6= ∅;
(ii) AS is a cyclic and local right S-act;
(iii) AS is a finitely generated local right S-act;
(iv) Every proper subact of AS is contained in a maximal subact, and AS

is a local right S-act;
(v) AS contains a maximal subact N such that N ≤s A;

(vi) AS contains the unique maximum subact N such that N ≤s A.

Proof. (i)⇒(ii) Let N be a maximal subact of AS and let L be an arbitrary
subact of AS where L ( N . Since N ∪ L = A, and AS is a hollow right S-act,
then A = L. Hence AS has just one maximal subact. If a ∈ A\N and L = aS,
then A = aS.

The implications (ii)⇒(iii) and (iii)⇒(iv) are obvious.
(iv)⇒(v) Let N be the unique maximal subact of A and let L be a proper

subact of A. By assumption, L ⊆ N . Then L ∪N = N 6= A and so N ≤s A.
(v)⇒(vi) Let N be a maximal subact of A which N ≤s A and let B be a

proper subact of A. So N ∪ B 6= A and by maximality of N we have B ⊆ N .
So N is maximum.
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(vi)⇒(i) Let N be the maximum subact of A which N ≤s A. For each proper
subact B of A we have B ⊆ N ≤s A, we deduce that B ≤s A. Therefore AS is
hollow. �

In general, every hollow (indecomposable co-uniform) S-act is not cyclic or
local. For instance, take S = (N,min) ∪ {ε} where ε denotes the externally
adjoined identity greater than each natural element. Then A = {1, 2, 3, . . .}
is not cyclic act and Max(A) = ∅. But all its subacts are {1} ⊆ {1, 2} ⊆
{1, 2, 3} ⊆ · · · , and so A is hollow.

Let S be a monoid and A a right S-act. The radical of the act A is the
intersection of all maximal subacts of A,

Rad(A) = ∩{N | N is a maximal subact of A} .

If A contains no a maximal subact, we put Rad(A) = A. If Rad(A) 6= ∅, the
Rad(A) is a subact of A.

In module theory, the radical submodule is equal to the union of superfluous
submodules. The next proposition demonstrates that it is also valid for S-acts.
To reach that we need the following lemma.

Lemma 4.4. If a ∈ A and C ≤ A such that aS ∪C = A, then C = A or there
exists a maximal subact M of A such that C ⊆M and a /∈M .

Proof. Let C 6= A. Take B = {D |D � A and C ⊆ D}. Clearly C ∈ B 6= ∅
and B is a partially ordered set. Let {Di}i∈I be a chain in B, so Di � A and
C ⊆ Di. Let D = ∪i∈IDi. If D � A, then D is an upper bound. Otherwise, if
D = A, a ∈ A implies a ∈ D, and there exists i ∈ I such that a ∈ Di. Then
aS ⊆ Di which implies that aS ∪ Di = Di = A, a contradiction. Then by
Zorn’s Lemma, B has a maximal element M . So M is a maximal subact of A
such that C ⊆M , a /∈M . �

As we know, A ≤s A if and only if A is simple.

Proposition 4.5. Let AS be a right S-act. Then

Rad(A) = ∪{B |B ≤s A} .

Proof. Suppose that Γ = ∪{B |B ≤s A}. First we show that Γ ⊆ Rad(A).
If Max(A) = ∅, clearly Γ ⊆ Rad(A) = A. Otherwise, let B ≤s A and N be
an arbitrary maximal subact of A. If B * N , being maximal of N implies
that B ∪ N = A. Since B ≤s A, N = A, a contradiction. Thus B ⊆ N , and
so Γ ⊆ Rad(A). To show the converse, let a ∈ Rad(M). First we show that
aS ≤s A. If aS = A, then A = Rad(A) and by Lemma 4.1 A is simple. So
aS = A ≤s A. Now, let aS be a proper subact of A and aS ∪C = A. If C 6= A
by previous lemma there exists a maximal subact M of A such that C ⊆ M
and a /∈ M , but a ∈ Rad(M) implies a ∈ M , a contradiction. Then C = A
which means that aS ≤s A. We deduce aS ⊆ ∪{B |B ≤s A}, and therefore
Rad(A) ⊆ Γ . �
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Using the previous proposition, the following result is immediately deduced.

Corollary 4.6. For a monoid S the following statements hold.

(i) Let AS be a right S-act. Then for each element a ∈ Rad(A), aS ≤s A.
(ii) Let A and B be right S-acts and let f : A−→B be an S-monomorphism.

Then f(Rad(A)) ⊆ Rad(B).
(iii) Rad(A) = A if and only if all finitely generated subact of A are super-

fluous in A.

Corollary 4.7. Let AS be a right S-act. Then each non-cyclic hollow subact
B of A is contained in Rad(A).

Proof. Assume that B is a hollow subact of A and b ∈ B. So bS is a proper
subact of B and bS ≤s B, and by Lemma 2.3, bS ≤s A. Using the previous
proposition, bS ⊆ Rad(A) which implies that B ⊆ Rad(A). �

Now, we give an equivalent condition for an S-act which its radical is super-
fluous.

Theorem 4.8. For a right S-act A the following statements are equivalent.

(i) Rad(A) ≤s A.
(ii) Every proper subact of A is contained in a maximal subact.

Proof. (i)⇒(ii) Let C be a proper subact of A. Since Rad(A) ≤s A, Rad(A) ∪
C 6= A. Suppose {Mi | i ∈ I} is the family of all maximal subacts of A. So
(∩i∈IMi) ∪ C 6= A, which implies that ∩i∈I(Mi ∪ C) 6= A. Then there exists
j ∈ I such that Mj ∪ C 6= A. Now, maximality of Mj implies that C ⊆ Mj ,
and the result follows.

(ii)⇒(i) Suppose that C is an arbitrary proper subact of A. There exists
a maximal subact M of A with C ⊆ M . Then we have C ∪ Rad(A) ⊆ M ∪
Rad(A) = M 6= A. Thus, Rad(A) ≤s A. �

Proposition 4.9. An S-act A is finitely generated if and only if A/Rad(A) is
finitely generated and Rad(A) ≤s A.

Proof. Let A be finitely generated, clearly A/Rad(A) is finitely generated. Let
C ≤ A, Rad(A) ∪ C = A, by Proposition 4.5, Rad(A) = ∪{B |B ≤s A}, so
∪{B |B ≤s A}∪C = A. SinceA is finitely generated, there existB1, . . . , Bm ≤s

A such that B1 ∪B2 ∪ · · · ∪Bm ∪C = A. Since B1 ≤s A and B1 ∪ (B2 ∪ · · · ∪
Bm ∪ C) = A, we imply that B2 ∪ · · · ∪Bm ∪ C = A. Since B2, . . . , Bm ≤s A,
we continue this manner to imply C = A. Thus Rad(A) ≤s A.

Sufficiency. Suppose that A/Rad(A) = ∪i=n
i=1 [ai]S. So Rad(A)∪(∪i=n

i=1aiS) =
A. Now, since Rad(A) ≤s A, ∪i=n

i=1aiS = A. Thus A is finitely generated. �

5. Supplemented acts

In this section we introduce the notions of a supplement of a subact and
supplemented S-acts, and general properties of them are discussed. Our aim is
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to use the notion of a supplement of a subact to investigate the union of hollow
S-acts.

Definition. Let B,C be proper subacts of a right S-act A. We call C is a
supplement of B in A, or B has a supplement C in A if the following two
conditions are satisfied.

(i) B ∪ C = A.
(ii) If D ⊆ C and B ∪D = A, then D = C.

If every proper subact of A has a supplement in A, then A is called a supple-
mented S-act.

Clearly, if an S-act A = B
∐
C, then C is a supplement of B. We first begin

with elementary properties for being supplement.

Lemma 5.1. Let A = B ∪ C. If B ∩ C 6= ∅, then C is a supplement of B in
A if and only if C ∩B = ∅ or C ∩B ≤s C.

Proof. Let E be a subact of C. Then (C∩B)∪E = C is equivalent to A = B∪E
and so the result is easily checked. �

The following result presents that co-uniform implies supplemented.

Proposition 5.2. Every co-uniform S-act is supplemented.

Proof. Let A be a right S-act and B be a proper subact of A. First suppose
that A is indecomposable. By Theorem 3.3, A is hollow. Then B ∪A = A and
(B ∩ A) = B ≤s A imply that A is a supplemented S-act. In the case that A
is not indecomposable, by Proposition 3.4, A = B

∐
C where B,C are simple

acts. Thus C is a supplement of B. �

The converse of Proposition 5.2 is not valid. For instance, let S be an
arbitrary monoid and A = Θ

∐
Θ
∐

Θ. Using Proposition 3.4, A is not co-
uniform. But, as all subsets of A are also subacts, for each subact B of A we
have A \B is a supplement of B.

Let C be a proper subact of an S-act A. By Lemma 2.3, each superfluous
subact of C is also superfluous in A. So clearly Rad(C) ⊆ C ∩ Rad(A).

Proposition 5.3. Suppose that C is a proper subact of an S-act A such that
C is a supplement of a proper subact B of A. Then the following hold.

(i) If D ∪ C = A for some D ⊂ B, then C is a supplement of D.
(ii) If A is finitely generated, then C is also finitely generated.
(iii) If E is a subact of C such that E ≤s A, then E ≤s C.
(iv) If N ≤s A, then N ∩ C ≤s C.
(v) If N ≤s A, then C is a supplement of N ∪B.
(vi) Rad(C) = C ∩ Rad(A).

Proof. (i) It is easily proved by using Lemmas 5.1 and 2.3.
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(ii) Let A be finitely generated. Since B∪C = A, there is a finitely generated
subact X ⊆ C such that B ∪X = A. By the minimality of C, we imply that
C = X.

(iii) Let X be a subact of C with E ∪X = C. Since B ∪ C = A, we have
B ∪ E ∪X = A. Now, since E ≤s A, B ∪X = A and so X = C.

(iv) Using part (iii) and Lemma 2.3, it is clearly checked.
(v) Let N ≤s A. We have (N∪B)∪C = A. LetX ⊆ C with (N∪B)∪X = A.

Then N ≤s A implies that B ∪X = A, and hence X = A.
(vi) We have Rad(C) ⊆ C ∩ Rad(A). To show the converse, if N ≤s A,

by part (iv), E = N ∩ C ≤s C, and E ⊆ Rad(C). Therefore, C ∩ Rad(A) =
C ∩ (∪{N | N ≤s A}) = ∪{N ∩ C | N ≤s A} ⊆ Rad(C). �

Now, we turn our attention to the concept of supplement in a projective
S-act.

Proposition 5.4. Let P be a projective S-act, and C be a supplement of B in
P . Then C is projective or there exists an epimorphism f : P −→ C such that
f(B) ≤s C.

Proof. Let C be a supplement of B in P . So P = B ∪ C. If B ∩ C = ∅, then
P = B

∐
C, and C is projective. Now, suppose that B∩C 6= ∅. Let π1 : C −→

C/(B ∩C) be the canonical epimorphism, and define π2 : P −→ C/(B ∩C) by

π2(p) =

{
[p], p ∈ C
θ, p ∈ B. So since P is projective, there exists a homomorphism

f : P −→ C with π1f = π2. It is easily checked that Imf ∪ B = P , and by
assumption, Imf = C. Moreover, since f(B) ⊆ B ∩ C ≤s C, by Lemma 2.3,
f(B) ≤s C. �

Finally, we conclude this paper by considering the union of hollow acts.

Theorem 5.5. Let A be a right S-act such that Rad(A) ≤s A. The following
statements are equivalent.

(i) A is a union of hollow acts.
(ii) Each proper subact B of A whose A/B is finitely generated has a sup-

plement.
(iii) Every maximal subact of A has a supplement.

Proof. (i)⇒(ii) Suppose A = ∪i∈ILi such that each Li is hollow S-act. Let
B be a proper subact of A such that A/B is finitely generated. Then A/B =
∪i∈I(Li ∪ B)/B. Since A/B is finitely generated, A = B ∪ L1 ∪ L2 ∪ · · · ∪ Ln

for some hollow S-acts L1, L2, . . . , Ln with B ∩ Li 6= Li for each 1 ≤ j ≤ n.
Take L = L1 ∪L2 ∪ · · · ∪Ln. To show that L is a supplement of B, let X be a
proper subact L. There exists 1 ≤ j ≤ n such that X ∩ Lj is a proper subact
of Lj . Now, since Lj is hollow, (B ∩ Lj) ∪ (X ∩ Lj) 6= Lj . Thus B ∪X 6= A,
and the result follows.

(ii)⇒(iii) follows by Lemma 1.1. (iii)⇒(i) Let B be the union of all hollow
subacts of A. In contrary, suppose that B is a proper subact of A. So there
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exists a maximal subact N of A with B ⊆ N . Let L be a supplement of N
in A. If L is simple, then L ⊆ B. Otherwise, let X be a proper subact of L.
So N ∪ X 6= A, and maximality of N implies that X is contained in N . So
by Lemma 5.1, N ∩ L ≤s L, and using Lemma 2.3, X ⊆ N ∩ L ⊆ L implies
X ≤s L. Then L is a hollow act. Therefore L is contained in B, and so
A = L ∪ N ⊆ B ∪ N = N , a contradiction. Therefore, B = A. Now suppose
that C is an arbitrary proper subact of A. There exists a maximal subact M
of A with C ⊆M . Then we have C ∪Rad(A) ⊆M ∪Rad(A) = M 6= A. Thus,
Rad(A) ≤s A. �
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