DOI QR코드

DOI QR Code

Microencapsulation of aronia extract and stability of encapsulated anthocyanins during sulgidduk cooking

아로니아 추출물의 미세캡슐 제조 및 설기떡의 안토시아닌 안정성 연구

  • Choi, Yeji (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University) ;
  • Koh, Eunmi (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University)
  • 최예지 (서울여자대학교 식품응용시스템학부 식품영양학전공) ;
  • 고은미 (서울여자대학교 식품응용시스템학부 식품영양학전공)
  • Received : 2022.01.04
  • Accepted : 2022.02.09
  • Published : 2022.04.30

Abstract

Aronia (Aronia melanocarpa cv. Viking) contains high amounts of anthocyanins, which are susceptible to heat. This study was conducted to identify an efficient coating material for encapsulating aronia extract to enhance the stability of anthocyanins during cooking. Maltodextrin, maltodextrin+gum Arabic, and maltodextrin+carboxymethyl cellulose were chosen as the coating materials, mixed with aronia extract at a ratio of 2:1, and freeze-dried after homogenization. The encapsulated aronia extract was then used as a sulgidduk ingredient. Sulgidduk prepared with the encapsulated aronia had significantly higher values for redness, anthocyanin retention, total phenolic content, and antioxidant activity compared to sulgidduk prepared with non-encapsulated aronia. In addition, the sensory evaluation revealed that sulgidduk prepared with encapsulated aronia produced better color and taste. These results indicate that the encapsulation of aronia extract improved the stability of the anthocyanins in aronia, and encapsulated aronia can be used as a functional colorant in the food industry.

본 연구에서는 아로니아 추출물을 3가지 코팅물질로 미세캡슐화하여 설기떡에 첨가하고 물리화학적 특성 및 안토시아닌의 잔존률을 확인하고, 관능평가를 실시하여 소비자의 기호도를 평가하였다. 아로니아 가루를 첨가한 설기떡에 비해 미세캡슐을 첨가한 설기떡의 가용성 고형분, 수분함량, 적색도, 총 안토시아닌 함량과 총 폴리페놀 함량이 유의적으로 높았다. 철환원력은 말토덱스트린과 아라비아검 또는 카복시메틸셀룰로스를 혼합하여 제조된 미세캡슐을 첨가한 설기떡이 유의적으로 높았다. 안토시아닌 잔존률은 아로니아 가루를 첨가한 설기떡보다 미세캡슐화된 아로니아 가루를 첨가한 설기떡에서 유의적으로 높게 나타났고, 말토덱스트린으로 제조된 미세캡슐 또는 말토덱스트린과 아라비아검을 혼합하여 제조된 미세캡슐을 첨가한 설기떡의 안토시아닌 잔존률이 가장 높았다. 아로니아 가루 또는 미세캡슐을 첨가한 경우에 설기떡의 신맛과 떫은맛이 증가하였고, 코팅물질을 혼합 사용한 미세캡슐의 첨가가 설기떡의 색에 대한 기호도가 높았다. 이러한 결과는 말토덱스트린과 아라비아검을 혼합하여 제조된 미세캡슐을 설기떡에 첨가하는 방법이 아로니아의 안토시아닌을 보호하는 역할을 한다는 것을 보여준다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1004117). 이 논문은 서울여자대학교 교내연구비의 지원을 받았음(2021-0457)

References

  1. Alvarez CE, Contreras JL, Rodriguez DE, Rondon DJ, Munoz B, Mezquita C. Application of microencapsulated anthocyanin extracted from purple cabbage in fermented milk drinks. Acta Agron. 68: 134-141 (2019) https://doi.org/10.15446/acag.v68n2.79078
  2. Ares G, Barrerio C, Deliza R, Gambaro A. Alternatives to reduce the bitterness, astringency and characteristic flavour of antioxidant extracts. Food Res. Int. 42(7): 871-878 (2009) https://doi.org/10.1016/j.foodres.2009.03.006
  3. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  4. Bourne MC. Texture Profile Analysis. Food Technol. 32: 62-72 (1978)
  5. Behra JS, Mattsson H, Cayre OJ, Robles ES, Tang H, Hunter TN. Characterization of sodium carboxymethyl cellulose aqueous solutions to support complex product formulation: a rheology and light scattering study. ACS Appl. Polym. Mater. 1: 344-358 (2019) https://doi.org/10.1021/acsapm.8b00110
  6. Cai X, Du X, Cui D, Wang C, Yang Z, Zhu G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll. 91: 238-245 (2019) https://doi.org/10.1016/j.foodhyd.2019.01.034
  7. Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive pickering emulstion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll. 109: 106093 (2020) https://doi.org/10.1016/j.foodhyd.2020.106093
  8. Castro N, Durrieu V, Raynaud C, Rouilly A. Influence of DE-value on the physicochemical properties of maltodextrin for melt extrusion processes. Carbohydr. Polym. 144: 464-473 (2016) https://doi.org/10.1016/j.carbpol.2016.03.004
  9. Castro-Lopez C, Espinoza-Gonzalez C, Ramos-Gonzalez R, Boone-Villa VD, Aguilar-Gonzalez MA, Martinez-Avila GCG, Aguilar CN, Ventura-Sobrevilla JM. Spray-drying encapsulation of microwave-assisted extracted polyphenols from Moringd oleifera: influence of tragacanth, locust bean, and carboxymethyl-cellulose formulations. Food Res. Int. 144: 110291 (2021) https://doi.org/10.1016/j.foodres.2021.110291
  10. Chrubasik C, Li G, Chrubasik S. The clinical effectiveness of chokeberry: a systematic review. Phytother Res. 24: 1107-1114 (2010) https://doi.org/10.1002/ptr.3226
  11. Chung KM and An HJ. Effects of oyster mushroom on quality of sulgidduk and gyeondan. J. Korean Soc. Food Sci. Nutr. 41: 1294-1300 (2012) https://doi.org/10.3746/JKFN.2012.41.9.1294
  12. Corkovic I, Pichler A, Buljeta I, Simunovic J, Kopjar M. Carboxymethylcellulose hydrogels: effect of its different amount on preservation of tart cherry anthocyanins and polyphenols. Curr. Plant Biol. 28: 100222 (2021) https://doi.org/10.1016/j.cpb.2021.100222
  13. Dag D, Kilercioglu M, Oztop MH. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Sci. Technol. 83: 86-94 (2017) https://doi.org/10.1016/j.lwt.2017.05.007
  14. Fang Z and Bhandari B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 129: 1139-1147 (2011) https://doi.org/10.1016/j.foodchem.2011.05.093
  15. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredient: an overview. Food Res. Int. 40: 1107-1121 (2007) https://doi.org/10.1016/j.foodres.2007.07.004
  16. Ghosh S, Sarkar T, Das A, Chakraborty R. Natural colorants from plant pigments and their encapsulation: an emerging window for the food industry. LWT-Food Sci. Technol. 153: 112527 (2022) https://doi.org/10.1016/j.lwt.2021.112527
  17. Gibis M and Weiss J. Inhibitory effect of cellulose fibers on the formation of heterocyclic aromatic amines in grilled beef patties. Food Chem. 229: 828-836 (2017) https://doi.org/10.1016/j.foodchem.2017.02.130
  18. Gibis M, Schuh V, Weiss J. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocoll. 45: 236-246 (2015) https://doi.org/10.1016/j.foodhyd.2014.11.021
  19. Heredia FJ, Francia-Aricha EM, Rivas-Gonzalo JC, Vicario IM, Santos- Buelga C. Chromatic characterization of anthocyanins from red grapes-I. pH effect. Food Chem. 63: 491-498 (1998) https://doi.org/10.1016/S0308-8146(98)00051-X
  20. Hwang YR and Hwang ES. Quality characteristics and antioxidant activity of sulgidduk prepared by addition of aronia powder (Aronia melanocarpa). Korean J. Food Sci. Technol. 47: 452-459 (2015) https://doi.org/10.9721/KJFST.2015.47.4.452
  21. Jang SY, Kim MH, Hong GJ. Quality characteristics of sulgidduk added with chennyuncho fruit powder. J. East Asian Soc. Diet Life. 22: 365-373 (2012)
  22. Jang YB, Koh EM. Sustainable water extraction of anthocyanins in aronia (Aronia melanocarpa L.) using conventional and ultrasonic- assisted method. Korean J. Food Sci. Technol. 53: 527-534 (2021) https://doi.org/10.9721/KJFST.2021.53.5.527
  23. Jankowski A, Niedworok J, Jankowska B. The influence of Aronia melanocarpa Elliot on experimental diabetes in the rats. Herba Pol. 45: 345-353 (1999)
  24. Javanbakht S and Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int. J. Biol. Macromol. 133: 21-29 (2019) https://doi.org/10.1016/j.ijbiomac.2019.04.079
  25. Jiang T, Mao Y, Sui L, Yang N, Li S, Zhu Z, Wang C, Yin S, He J, He Y. Degradation of anthocyanins and polymeric color formation during heat treatment of purple potato extract at different pH. Food Chem. 274: 460-470 (2019) https://doi.org/10.1016/j.foodchem.2018.07.141
  26. Juric S, Juric M, Krol-Kilinsk Z, Vlanhovicek-Kahlina K, Vincekovic M, Dragovic-Uzelac V. Source, stability, encapsulation and application of natural pigments in foods. Food Rev. Int. 36: 1-56 (2020) https://doi.org/10.1080/87559129.2019.1608558
  27. Keast RSJ, Breslin PAS. An overview of binary taste-taste interactions. Food Qual. Prefer. 14(1): 111-124 (2003) https://doi.org/10.1016/S0950-3293(02)00110-6
  28. Labuschagne P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: a review. Food Res. Int. 227-247 (2018)
  29. Lavelli V, Sri Harsha PSC, Spigno G. Modelling the stability of maltodextrin-encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chem. 209: 323-331 (2016) https://doi.org/10.1016/j.foodchem.2016.04.055
  30. Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juice, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88: 1269-1278 (2005) https://doi.org/10.1093/jaoac/88.5.1269
  31. Mahdavi SA, Jafari SM, Assadpoor E, Dehnad D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic, and gelatin. Int. J. Biol. Macromol. 85: 379-385 (2016a) https://doi.org/10.1016/j.ijbiomac.2016.01.011
  32. Mahdavi SA, Jafari SM, Assadpour E, Ghorbani M. Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation. J. Food Eng. 181: 59-66 (2016b) https://doi.org/10.1016/j.jfoodeng.2016.03.003
  33. Marcillo-Parra V, Tupuna-Yerovi DS, Gonzalez Z. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application - a review. Trends Food Sci. Technol. 116: 11-23 (2021) https://doi.org/10.1016/j.tifs.2021.07.009
  34. Mihalcea L, Barbu V, Enachi E, Andronoiu DG, Rapeanu G, Stoica M, Dumitrascu L, Stanciuc N. Microencapsulation of red grape juice by freeze drying and application in jelly formulation. Food Technol. Biotechnol. 58: 20-29 (2020) https://doi.org/10.17113/ftb.58.01.20.6429
  35. Nuno M, Elisabete C, Catarina L, Victor-de F. Influence of the tannin structure on the disruption effect of carbohydrates on proteintannin aggregates. Anal. Chim. Acta 513(1): 135-140 (2004) https://doi.org/10.1016/j.aca.2003.08.072
  36. Oancea AM, Hasan M, Vasile AM, Barbu V, Enachi E, Bahrim G, Rapeanu G, Silvi S, Stanciuc N. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT-Food Sci. Technol. 95: 129-134 (2018) https://doi.org/10.1016/j.lwt.2018.04.083
  37. Olas B, Wachowicz B, Tomczak A, Erler J, Stochmal A, Oleszek W. Comparative anti-platelet and antioxidant properties of polyphenol- rich extracts from berries of Aronia melanocarpa, seeds of grape and bark of Yuccaschidigera in vitro. Plateltets. 19: 70-77 (2008) https://doi.org/10.1080/09537100701708506
  38. Oszmianski J and Wojdylo A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 221: 809-813 (2005) https://doi.org/10.1007/s00217-005-0002-5
  39. Park EJ. Quality characteristics of sulgidduk added with aronia (Aronia melanocarpa) powder. J. East Asian Soc. Diet Life. 24: 646-653 (2014)
  40. Papoutsis K, Golding JB, Vuong Q, Pristijono P, Stathopoulos CE, Scarlett C, Bowyer M. Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan. Foods 7: 115 (2018) https://doi.org/10.3390/foods7070115
  41. Re R. Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  42. Sakulnarmrat K and Konczak I. Encapsulation of Melodorum fruticosum Lour. anthocyanin-rich extract and its incorporation into model food. LWT-Food Sci. Technol. 153: 112546 (2022) https://doi.org/10.1016/j.lwt.2021.112546
  43. Santos JS, Brizola BRA, Granato D. High-throughput assay comparison and standardization for metal chelating capacity screening: a proposal and application. Food Chem. 214: 515-522 (2017) https://doi.org/10.1016/j.foodchem.2016.07.091
  44. Sarabandi K, Jafari SM, Mahoonak AS, Mohammadi A. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int. J. Biol. Macromol. 140: 59-68 (2019) https://doi.org/10.1016/j.ijbiomac.2019.08.133
  45. Singleton VL and Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 71: 249-255 (1965) https://doi.org/10.5344/ajev.2020.19082
  46. Souza ACP, Gurak PD, Marczak LDF. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins- rich extract from jaboticaba pomace. Food Bioprod. Process. 102: 186-194 (2017) https://doi.org/10.1016/j.fbp.2016.12.012
  47. Sung YK, Kim TH, Lee BH. Electron beam radiation syntheses of carboxymethylcellulose-based composite superabsorbent hydrogels: dependence of gel properties on polymer composition and additives. Clean Technol. 22: 258-268 (2016) https://doi.org/10.7464/KSCT.2016.22.4.258
  48. Suravanichnirachorn W, Haruthaithanasan V, Suwonsichon S, Sukatta U, Maneeboon T, Chantrapornchai W. Effect of carrier type and concentration on the properties, anthocyanins and antioxidant activity of freeze-dried mao [Antidesma bunius (L.) Spreng] powders. Agric. Nat. Resour. 52: 354-360 (2018) https://doi.org/10.1016/j.anres.2018.09.011
  49. Tumbas Saponjac V, Cetkovic G, Canadanovic-Brunet J, Pajin B, Djilas S, Petrovic J, Loncarevic I, Stajcic S, Vulic J. Sour cherry pomace extract encapsulated in whey and soy proteins: incorporation in cookies. Food Chem. 207: 27-33 (2016) https://doi.org/10.1016/j.foodchem.2016.03.082
  50. Turak EJ, Sak A, Witrowa-Rajchert D. Influence of the carrier material on the stability of chokeberry juice microencapsules. Int. Agrophys. 33: 517-525 (2019) https://doi.org/10.31545/intagr/113530
  51. Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 52: 7846-7856 (2004) https://doi.org/10.1021/jf048685
  52. Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 51: 502-509 (2003) https://doi.org/10.1021/jf020728u