DOI QR코드

DOI QR Code

Inhibitory effects of tuberostemonine on Staphylococcus aureus biofilm

Tuberostemonine에 의한 Staphylococcus aureus의 생물막 억제 효과

  • Yum, Su Jin (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Seung Min (Department of Human Ecology, Korea National Open University) ;
  • Kwon, Jun Hyeok (Department of Food Science and Technology, Chungnam National University) ;
  • Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University)
  • 염수진 (충남대학교 농업생명과학대학 식품공학과) ;
  • 김승민 (한국방송통신대학교 자연과학대학 생활과학부) ;
  • 권준혁 (충남대학교 농업생명과학대학 식품공학과) ;
  • 정희곤 (충남대학교 농업생명과학대학 식품공학과)
  • Received : 2022.03.22
  • Accepted : 2022.04.05
  • Published : 2022.04.30

Abstract

Antibiotic resistance is a serious problem to food safety as well as human healthcare. To avoid this, there are several approaches for a new class of antibiotic agents that target only production of virulence factors such as biofilm without bacterial growth defect. The objective of this study was to investigate the antibiofilm activity of tuberostemonine in Staphylococcus aureus. Tuberostemonine significantly reduced the biofilm formation (26.07-47.02%) in the crystal violet assay whereas there were no effect on S. aureus growth. The dispersion in preformed biofilm was also observed by confocal laser scanning microscopy (CLSM). Quantification real-time PCR revealed that the icaA and agrA expression having an important role in biofilm production of S. aureus were strongly affected with tuberostemonine. These results suggest that tuberostemonine has potential for controlling biofilm formation and dispersion by effect on virulence regulation of S. aureus.

본 연구는 S. aureus에 대한 tuberostemonine의 항균 및 항생물막 효과에 대하여 확인하였다. S. aureus에 대한 tuberostemonine의 생장 저해 효과가 없음을 확인하였으나, crystal violet 염색법과 CLSM 이미지 측정을 통해 tuberostemonine이 유의한 S. aureus 항생물막 효과 가지는 것을 알 수 있었다. S. aureus의 생물막 형성과 분해 관련 유전자인 icaA와 agrA의 발현은 tuberostemonine를 처리하였을 때 유의미하게 각각 감소 또는 증가하는 것으로 나타났다. 따라서 본 연구에서 생물막 형성 저해 및 분해 효과가 확인된 천연화합물인 tuberostemonine은 S. aureus의 내성 발생 위험이 적은 새로운 항생물막제제로서 사용가능 할 것으로 사료된다.

Keywords

Acknowledgement

이 연구는 한국연구재단(NRF-2019R1F1A1059458)과 충남대학교 학술연구비의 지원을 받아 수행되었습니다.

References

  1. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223-227 (2005) https://doi.org/10.1126/science.1106753
  2. Aswathanarayan JB, Vittal RR. Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in Pseudomonas aeruginosa and Salmonella typhimurium. RSC Adv. 8: 36133-36141 (2018) https://doi.org/10.1039/c8ra06413j
  3. Aubourg M, Pottier M, Leon A, Bernay B, Dhalluin A, Cacaci M, Torelli R, Ledormand P, Martini C, Sanguinetti M. Inactivation of the response regulator AgrA has a pleiotropic effect on biofilm formation, pathogenesis and stress response in Staphylococcus lugdunensis. Microbiol. Spectr. 10: e01598-01521 (2022)
  4. Bai JR, Wu YP, Elena G, Zhong, Gao KH. Insight into the effect of quinic acid on biofilm formed by Staphylococcus aureus. RSC Adv. 9: 3938-3945 (2019) https://doi.org/10.1039/C8RA09136F
  5. Brem B, Seger C, Pacher T, Hofer O, Vajrodaya S, Greger H. Feeding deterrence and contact toxicity of Stemona alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50: 6383-6388 (2002) https://doi.org/10.1021/jf0205615
  6. da Cunha MG, Sardi JdCO, Freires IA, Franchin M, Rosalen PL. Antimicrobial, anti-adherence and antibiofilm activity against Staphylococcus aureus of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. Microb. Pathogenesis 139: 103855 (2020) https://doi.org/10.1016/j.micpath.2019.103855
  7. Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks-United States, 2009-2015. MMWR Surveill. Summ. 67: 1-11 (2018)
  8. Di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Ianieri A. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50: 930-936 (2015) https://doi.org/10.1016/j.foodcont.2014.10.048
  9. Dotto C, Lombarte Serrat A, Ledesma M, Vay C, Ehling-Schulz M, Sordelli DO, Grunert T, Buzzola F. Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Sci. Rep.-UK 11: 1-14 (2021) https://doi.org/10.1038/s41598-020-79139-8
  10. Fetsch A, Johler S. Staphylococcus aureus as a foodborne pathogen. Curr. Clin. Microbiol. Rep. 5: 88-96 (2018) https://doi.org/10.1007/s40588-018-0094-x
  11. Gad GFM, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, Abd El-Baky RM. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J. Infect. Dev. Ctries. 3: 342-351 (2009)
  12. Gotz F. Staphylococcus and biofilms. Mol. Microbiol. 43: 1367-1378 (2002) https://doi.org/10.1046/j.1365-2958.2002.02827.x
  13. Greger H. Structural classification and biological activities of Stemona alkaloids. Phytochem. Rev. 18: 463-493 (2019) https://doi.org/10.1007/s11101-019-09602-6
  14. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7: 5901-5914 (2012)
  15. Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310: 670-674 (2005) https://doi.org/10.1126/science.1116739
  16. Jain A, Parihar D. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal. Agric. Biotechnol. 16: 677-682 (2018) https://doi.org/10.1016/j.bcab.2018.09.023
  17. Jang JE, Kil YS, Park RH, Oh S, Kim HK, Jeong MG, Seo EK, Hwang ES. Suppression of IL-2 production and proliferation of CD4+ T cells by tuberostemonine O. Chem. Biodivers. 11: 1954-1962 (2014) https://doi.org/10.1002/cbdv.201400074
  18. Jeber ZK, Tawfeek FK. Effect of turmeric oil on reproductive efficiency of adult male rats exposed to potassium dichromate. J. Environ. Sci. Toxicol. Food Technol. 3: 52-58 (2013)
  19. Jeon DY, Yum SJ, Seo DW, Kim SM, Jeong HG. Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res. Int. 126: 108664-108674 (2019) https://doi.org/10.1016/j.foodres.2019.108664
  20. Jiang Q, Jin Z, Sun B. MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons in Staphylococcus aureus. Appl. Environ. Microb. 84: e01008-01018 (2018)
  21. Jung KH, Kil YS, Jung J, Park S, Shin D, Lee K, Seo EK, Bae H. Tuberostemonine N, an active compound isolated from Stemona tuberosa, suppresses cigarette smoke-induced sub-acute lung inflammation in mice. Phytomedicine 23: 79-86 (2016) https://doi.org/10.1016/j.phymed.2015.11.015
  22. Kim YJ, Yu HH, Park YJ, Lee NK, Paik HD. Anti-biofilm activity of cell-free supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. J. Microbiol. Biotechnol. 30: 1854-1861 (2020) https://doi.org/10.4014/jmb.2008.08053
  23. Lee JH, Kim YG, Lee K, Kim SC, Lee J. Temperature-dependent control of Staphylococcus aureus biofilms and virulence by thermoresponsive oligo (N-vinylcaprolactam). Biotechnol. Bioeng. 112: 716-724 (2015) https://doi.org/10.1002/bit.25496
  24. Lee JH, Kim YG, Ryu SY, Lee J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep. 6: 1-11 (2016) https://doi.org/10.1038/s41598-016-0001-8
  25. Lee JY, Wang HJ, Shin DB, Cho YS. Antibiotic resistance and bacterial biofilm formation by Staphylococcus aureus strains isolated from various foods. Microbiol. Biotechnol. Lett. 41: 96-104 (2013) https://doi.org/10.4014/kjmb.1208.08012
  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408 (2001) https://doi.org/10.1006/meth.2001.1262
  27. Meireles A, Borges A, Giaouris E, Simoes M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res. Int. 86: 140-146 (2016) https://doi.org/10.1016/j.foodres.2016.06.006
  28. Meng Y, Hou X, Lei J, Chen M, Cong S, Zhang Y, Ding W, Li G, Li X. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant Staphylococcus aureus. Pharmaceut. Res. 33: 763-775 (2016) https://doi.org/10.1007/s11095-015-1825-9
  29. Mizar P, Arya R, Kim T, Cha S, Ryu KS, Yeo WS, Lee SS. Total synthesis of Xanthoangelol B and its various fragments: toward inhibition of virulence factor production of Staphylococcus aureus. J. Med. Chem. 61: 10473-10487 (2018) https://doi.org/10.1021/acs.jmedchem.8b01012
  30. Nait Chabane Y, Mlouka MB, Alexandre S, Nicol M, Marti S, Pestel- Caron M, De E. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol. 14: 1-7 (2014) https://doi.org/10.1186/1471-2180-14-1
  31. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: 3-15 (2010)
  32. Nguyen PT, Nguyen MT, Bolhuis A. Inhibition of biofilm formation by alpha-mangostin loaded nanoparticles against Staphylococcus aureus. Saudi. J. Biol. Sci. 28: 1615-1621 (2021) https://doi.org/10.1016/j.sjbs.2020.11.061
  33. Pisoschi AM, Pop A, Georgescu C, Turcus V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 143: 922-935 (2018) https://doi.org/10.1016/j.ejmech.2017.11.095
  34. Rodriguez-Martinez JM, Pascual A. Antimicrobial resistance in bacterial biofilms. Rev. Med. Microbiol. 17: 65-75 (2006) https://doi.org/10.1097/01.revmedmi.0000259645.20603.63
  35. Ross AS, Saulnier G, Newell J, Isaacson D. Current source design for electrical impedance tomography. Physiol. Meas. 24: 509 (2003) https://doi.org/10.1088/0967-3334/24/2/361
  36. Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J. Agric. Food Chem. 56: 1955-1962 (2008) https://doi.org/10.1021/jf072591j
  37. Shrestha L, Kayama S, Sasaki M, Kato F, Hisatsune J, Tsuruda K, Koizumi K, Tatsukawa N, Yu L, Takeda K. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms. Med. Microbiol. Immunol. 60: 148-159 (2016) https://doi.org/10.1111/1348-0421.12359
  38. Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front. Microbiol. 9: 55 (2018) https://doi.org/10.3389/fmicb.2018.00055
  39. Van Hung P, Morita N. Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohyd. Polym. 61: 314-321 (2005) https://doi.org/10.1016/j.carbpol.2005.04.021
  40. Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14: 2535-2554 (2009) https://doi.org/10.3390/molecules14072535
  41. Yum SJ, Kim SM, Yu YC, Jeong HG. Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid. Korean J. Food Sci. Technol. 49: 146-150 (2017) https://doi.org/10.9721/KJFST.2017.49.2.146
  42. Yu YC, Yum SJ, Jeon DY, Jeong HG. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechn. 28: 1318-1331 (2018) https://doi.org/10.4014/jmb.1803.03007
  43. Yu D, Zhao L, Xue T, Sun B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 12: 1-12 (2012) https://doi.org/10.1186/1471-2180-12-1
  44. Zhang Y, Gao T, Kang S, Sillanpaa M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ. Pollut. 254: 112953-112957 (2019) https://doi.org/10.1016/j.envpol.2019.07.121