DOI QR코드

DOI QR Code

고해상도 의학 데이터 전송에 적합한 자동 제어 버스트 크기 기반 손실 차등화 기법을 위한 동작 영역 분석

Analysis of Operation Areas for Automatically Tuning Burst Size-based Loss Differentiation Scheme Suitable for Transferring High Resolution Medical Data

  • 투고 : 2022.02.18
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

의료 현장에서는 매우 고해상도의 이미지를 사용하고 있으며, 이는 손실에 매우 민감한 정보이다. 이에 따라 높은 대역폭뿐만 아니라 고신뢰성 전송을 제공할 수 있는 광 인터넷의 활용이 요구되고 있다. 그러나 인터넷의 특성상 다양한 종류의 데이터가 동일한 대역폭을 활용하게 되고, 이를 효과적으로 차별화할 수 있는 수단이 요구되고 있다. 이를 위해 광 지연 라인 버퍼가 많이 활용되고 있다. 그러나, 이러한 버퍼는 제공 부하, 측정된 데이터 버스트 크기, 기본 지연 유닛 등과 같은 최적값을 이용해 구성된다. 광 버퍼는 한 번 설정되면 변경할 수 없다. 그러므로 데이터 버스트 크기를 동적으로 변경시키는 방법이 활용되고 있다. 그러나 동적으로 버스트의 길이를 변화시키는 것은 상당한 불안정성을 내포하고 있다. 이에 본 논문에서는 안정적인 동작을 보장할 수 있는 동작 조건을 분석하고자 한다. 본 논문의 기법을 활용해 높은 우선순위의 고해상도 의료 데이터를 손실 없이 안정적으로 전송할 수 있다.

In medical area, very high resolution images, which is loss sensitive data, are used. Therefore, the use of optical internet with high bandwidth and the transmission of high realiability is required. However, according to the nature of the Internet, various data use the same bandwidth and a new scheme is needed to differentiate effectively these data. In order to achieve the differentiation, optical delay line buffers are used. However, these buffers is constructed based on some optimal values such as the average offered load, measured data burst length, and basic delay unit. Once the buffers are installed, they are impossible to reinstall new buffers. So, the scheme changing burst length dynamically was considered. However, this method is highly unstable. Therefore, in this article, in order to guarantee the stable operation of the scheme, the analysis of operation conditions is performed. With the analysis together with the scheme, high resolution medical data with the higher class can transmit stably without loss.

키워드

참고문헌

  1. Y. Yinghua, S. Dixit & M. Ali. (2000). On Joint Protection/Restoration in IP-centric DWDM Based Optical Transport Networks. IEEE Communications Magazine, 38(6), 174-183. DOI : 10.1109/35.846091
  2. M. Yoo & C. Qiao. (2000). The Effect of Limited Fiber Delay Lines on QoS Performance of Optical Burst Switched WDM Networks. Proceedings of ICC 2000, (2), 974-979. DOI : 10.1109/ICC.2000.853643
  3. V. Vinod. (2002). Burst Segmentation: An Approach for Reducing Packet Loss in Optical Burst-switched Networks. Proceedings of ICC 2002, (5), 2673-2677. DOI : 10.1109/ICC.2002.997328
  4. Q. Zhang & C. Neal. (2011). TCP over Optical Burst-switched Networks with Controlled Burst Retransmission. Photonic Network Communications, 22(3), 299-312. DOI : 10.1007/s11107-011-0329-8
  5. R. D. Doverspike, G. Sahin, J. L. Strand & R. W. Tkach. (1999). Fast Restoration in a Mesh Network of Optical Cross-connects. Proceedings of OFC 1999, 1, 170-172. DOI : 10.1109/OFC.1999.767828
  6. D. Avranil & B. Paramita. (2008). Performance Evolution in Optical Burst Switched Networks. Proceeding of WOCN 2008, 1-5. DOI : 10.1109/WOCN.2008.4542478
  7. Z. Zhou, T. Lin, K. Thulasiraman & G. Xue. (2017). Novel Survivable Logical Topology Routing by Logical Protecting Spanning Trees in IP-over-WDM Networks. IEEE/ACM Transactions on Networking, 25(3), 1673-1685. DOI : 10.1109/TNET.2016.2639362
  8. Z. Zhou, T. Lin & K. Thulasiraman. (2017). Survivable Cloud Network Design against Multiple Failures through Protecting Spanning Trees. Journal of Lightwave Technology, 35(2), 288-298. DOI : 10.1109/JLT.2016.2637352
  9. L. Xu, Q. Guo, T. Yang & H. Sun. (2019). Robust Routing Optimization for Smart Grids Considering Cyber-Physical Interdependence. IEEE Transactions on Smart Grid, 10(5), 5620-5629. DOI : 10.1109/TSG.2018.2888629
  10. R. Cohen & G. Nakibly. (2017). Restorable Logical Topology in the Face of No or Partial Traffic Demand Knowledge. IEEE/ACM Transactions on Networking, 24(4), 2074-2085. DOI : 10.1109/INFOCOM.2014.6848099
  11. S. Kim, N. Kim & M. Kang. (2002). Contention Resolution for Optical Burst Switching Networks Using Alternative Routing. Proceedings of ICC 2002, (5), 2678-2681. DOI : 10.1109/ICC.2002.997329
  12. S. Ramamurthy & B. Mukherjee. (1999). Survavable WDM Mesh Networks. I. Protection. Proceedings of INFOCOM 1999, 2, 744-751. DOI : 10.1109/INFCOM.1999.751461
  13. M. Xu, K. Naik & K. Thulasiraman. (2020). Fault Tolerance of Hypercube like Networks: Spanning Laceability under Edge Faults. Theoretical Computer Science, 835(2), 44-57. DOI : 10.1016/j.tcs.2020.05.049
  14. R. Alex & C. I. Oliver. (2007). A Survey of IP and Multiprotocol Label Switching Fast Reroute Schemes. Computer Networks, 51(8), 1882-1907. DOI : 10.1016/j.comnet.2006.09.010
  15. Z. Zhou, T. Lin, K. Thulasiraman, G. Xue & S. Sahni. (2015). Cross-layer Network Survivability under Multiple Cross-layer Metrics. Journal of Optical Communications and Networking, 7(6), 540-553. DOI : 10.1364/JOCN.7.000540
  16. M. Goyal et al. (2012). Improving Convergence Speed and Scalability in OSPF: A Survey. IEEE Communications Surveys & Tutorials, 14(2), 443-463. DOI : 10.1109/SURV.2011.011411.00065
  17. P. Li & M. Xu. (2017). The Super Spanning Connectivity of Arrangement Graphs. International Journal of Foundations of Computer Science, 28(8), 1047-1072. DOI : 10.1142/S0129054117500381
  18. J. Li (2016), "Reserve Output Link and FDL Together or Separately in Optical Burst Switching Networks," Proceedings of ICTON 2016, 1-4. DOI : 10.1109/ICTON.2016.7550481
  19. Y. Lee. (2022). Adaptive Burst Size-based Loss Differentiation for Transmitting Massive Medical Data in Optical Internet. Journal of Digital Convergence, 20(3), 389-397. DOI: doi.org/10.14400/JDC.2022.20.3.389