DOI QR코드

DOI QR Code

Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression

베이즈 정보 기준을 활용한 분할-정복 벌점화 분위수 회귀

  • Kang, Jongkyeong (Department of Information Statistics, Kangwon National University) ;
  • Han, Seokwon (Department of Mathematics, Korea Military Academy) ;
  • Bang, Sungwan (Department of Mathematics, Korea Military Academy)
  • 강종경 (강원대학교 정보통계학전공) ;
  • 한석원 (육군사관학교 수학과) ;
  • 방성완 (육군사관학교 수학과)
  • Received : 2021.10.19
  • Accepted : 2022.01.03
  • Published : 2022.04.30

Abstract

Quantile regression is widely used in many fields based on the advantage of providing an efficient tool for examining complex information latent in variables. However, modern large-scale and high-dimensional data makes it very difficult to estimate the quantile regression model due to limitations in terms of computation time and storage space. Divide-and-conquer is a technique that divide the entire data into several sub-datasets that are easy to calculate and then reconstruct the estimates of the entire data using only the summary statistics in each sub-datasets. In this paper, we studied on a variable selection method using Bayes information criteria by applying the divide-and-conquer technique to the penalized quantile regression. When the number of sub-datasets is properly selected, the proposed method is efficient in terms of computational speed, providing consistent results in terms of variable selection as long as classical quantile regression estimates calculated with the entire data. The advantages of the proposed method were confirmed through simulation data and real data analysis.

분위수 회귀 모형은 변수에 숨겨진 복잡한 정보를 살펴보기 위한 효율적인 도구를 제공하는 장점을 바탕으로 많은 분야에서 널리 사용되고 있다. 그러나 현대의 대용량-고차원 데이터는 계산 시간 및 저장공간의 제한으로 인해 분위수 회귀 모형의 추정을 매우 어렵게 만든다. 분할-정복은 전체 데이터를 계산이 용이한 여러개의 부분집합으로 나눈 다음 각 분할에서의 요약 통계량만을 이용하여 전체 데이터의 추정량을 재구성하는 기법이다. 본 연구에서는 분할-정복 기법을 벌점화 분위수 회귀에 적용하고 베이즈 정보기준을 활용하여 변수를 선택하는 방법에 관하여 연구하였다. 제안 방법은 분할 수를 적절하게 선택하였을 때, 전체 데이터로 계산한 일반적인 분위수 회귀 추정량만큼 변수 선택의 측면에서 일관된 결과를 제공하면서 계산 속도의 측면에서 효율적이다. 이러한 제안된 방법의 장점은 시뮬레이션 데이터 및 실제 데이터 분석을 통해 확인하였다.

Keywords

Acknowledgement

본 논문은 육군사관학교 화랑대연구소의 2021년도(21-군학-19) 연구활동비 지원을 받아 연구되었음.

References

  1. Alhamzawi R (2015). Model selection in quantile regression models, Journal of Applied Statistics, 42, 445-458. https://doi.org/10.1080/02664763.2014.959905
  2. Bang S and Shin S (2016). A comparison study of multiple linear quantile regression using non-crossing constraints, The Korean Journal of Applied Statistics, 29, 773-786. https://doi.org/10.5351/KJAS.2016.29.5.773
  3. Belloni A and Chernozhukov V (2011). L1-penalized quantile regression in high-dimensional sparse models, The Annals of Statistics, 39, 82-130. https://doi.org/10.1214/10-AOS827
  4. Bertin-Mahieux T, Ellis DP, Whitman B, and Lamere P (2011). The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (IS-MIR).
  5. Chen L and Zhou Y (2020). Quantile regression in big data: A divide and conquer based strategy, Computational Statistics & Data Analysis, 144, 106892. https://doi.org/10.1016/j.csda.2019.106892
  6. Chen X and Xie MG (2014). A split-and-conquer approach for analysis of extraordinarily large data, Statistica Sinica, 165-1684.
  7. Cole T and Green P (1992). Smoothing reference centile curves: The LMS method and penalized likelihood, Statistics in Medicine, 11, 1305-1319. https://doi.org/10.1002/sim.4780111005
  8. Cook L (2014). Gendered parenthood penalties and premiums across the earnings distribution in Australia, the United Kingdom, and the United States. European Sociological Review, 30, 360-372. https://doi.org/10.1093/esr/jcu044
  9. Dasgupta A, Drineas P, Harb B, Kumar R, and Mahoney MW (2009). Sampling algorithms and corsets for lp regression, SIAM Journal on Computing, 38, 2060-2078. https://doi.org/10.1137/070696507
  10. Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
  11. Fan TH, Lin DK, and Cheng KF (2007). Regression analysis for massive datasets, Data & Knowledge Engineering, 61, 554-562. https://doi.org/10.1016/j.datak.2006.06.017
  12. Frank I and Friedman J (1993). A statistical view of some chemometrics regression tools, Technometrics, 35, 109-148. https://doi.org/10.1080/00401706.1993.10485033
  13. Heagerty P and Pepe M (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in U.S. children, The Journal of the Royal Statistical Society, Series C (Applied Statistics), 48, 533-551. https://doi.org/10.1111/1467-9876.00170
  14. Jiang R, Qian W, and Zhou Z (2016). Single-index composite quantile regression with heteroscedasticity and general error distributions, Statistical Papers, 57, 185-203. https://doi.org/10.1007/s00362-014-0646-y
  15. Jung BH and Lim DH (2017). Comparison analysis of big data integration models, Journal of the Korean Data & Information Science Society, 28, 755-768.
  16. Kang J and Jhun M (2020). Divide-and-conquer random sketched kernel ridge regression for large-scale data analysis, Journal of Korean Data & Information Science Society, 31, 15-23. https://doi.org/10.7465/jkdi.2020.31.1.15
  17. Kim KH and Shin SJ (2017). Adaptive ridge procedure for L0-penalized weighted support vector machines, Journal of the Korean Data & Information Science Society, 28, 1271-1278. https://doi.org/10.7465/jkdi.2017.28.6.1271
  18. Koenker R and Ng P (2005). A Frisch-Newton algorithm for sparse quantile regression, Acta Mathematicae Applicatae Sinica, 21, 225-236. https://doi.org/10.1007/s10255-005-0231-1
  19. Lee E, Noh H and Park B (2014). Model selection via Bayesian information criterion for quantile regression models, Journal of the American Statistical Association, 109, 216-229. https://doi.org/10.1080/01621459.2013.836975
  20. Li R, Lin DK, and Li B (2013). Statistical inference in massive data sets, Applied Stochastic Models in Business and Industry, 29, 399-409. https://doi.org/10.1002/asmb.1927
  21. Li Y (2008). L1-norm quantile regression, Journal of Computational and Graphical Statistics, 17, 163-185. https://doi.org/10.1198/106186008X289155
  22. Ning Z and Tang L (2014). Estimation and test procedures for composite quantile regression with covariates missing at random, Statistics & Probability Letters, 95, 15-25. https://doi.org/10.1016/j.spl.2014.08.003
  23. Okada K and Samreth S (2012). The effect of foreign aid on corruption: a quantile regression approach, Economics Letters, 115, 240-243. https://doi.org/10.1016/j.econlet.2011.12.051
  24. Peng B and Wang L (2015). An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression, Journal of Computational and Graphical Statistics, 24, 676-694. https://doi.org/10.1080/10618600.2014.913516
  25. Portnoy S and Koenker R (1997). The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators, Statistical Science, 12, 279-300. https://doi.org/10.1214/ss/1030037960
  26. Powell D and Wagner J (2014). The exporter productivity premium along the productivity distribution: evidence from quantile regression with nonadditive firm fixed effects, Review of World Economics, 150, 763-785. https://doi.org/10.1007/s10290-014-0192-7
  27. Scott SL, Blocker AW, Bonassi FV, Chipman HA, George EI, and McCulloch RE (2016). Bayes and big data: The consensus Monte Carlo algorithm, International Journal of Management Science and Engineering Management, 11, 78-88.
  28. Scott SL (2017). Comparing consensus Monte Carlo strategies for distributed Bayesian computation, Brazilian Journal of Probability and Statistics, 31, 668-685. https://doi.org/10.1214/17-BJPS365
  29. Srivastava S, Cevher V, Dinh Q, and Dunson D (2015). WASP: Scalable Bayes via barycenters of subset posteriors, In Artificial Intelligence and Statistics, 912-920.
  30. Tibshirani R (1996). Regression shrinkage and selection via the LASSO, Journal of the Royal Statistical Society: Series B, 58, 267-288.
  31. Wang H and Leng C (2007). Unified Lasso estimation by least squares approximation, Journal of the American Statistical Association, 102, 1418-1429.
  32. Wang H, Li B, and Leng C (2009). Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society, Series B, 71, 671-683. https://doi.org/10.1111/j.1467-9868.2008.00693.x
  33. Wang H, Li R, and Tsai CL (2007). Tuning parameter Selectors for the Smoothly Clipped Absolute Deviation Method, Biometrika, 94, 553-568. https://doi.org/10.1093/biomet/asm053
  34. Wang L, Wu Y, and Li R (2012). Quantile regression for analyzing Heterogeneity in Ultra-High Dimension, Journal of American Statistical Association, 107, 214-222. https://doi.org/10.1080/01621459.2012.656014
  35. Wu Y and Liu Y (2009). Variable selection in quantile regression. Statistica Sinica, 801-817.
  36. Xu Q, Cai C, Jiang C, Sun F, and Huang X (2020). Block average quantile regression for massive dataset, Statistical Papers, 61, 141-165. https://doi.org/10.1007/s00362-017-0932-6
  37. Xue J and Liang F (2019). Double-parallel Monte Carlo for Bayesian analysis of big data, Statistics and Computing, 29, 23-32 https://doi.org/10.1007/s11222-017-9791-1
  38. Yang J, Meng X, and Mahoney MW (2014). Quantile regression for large-scale applications, SIAM Journal on Scientific Computing, 36, 78-110.
  39. Zhang Y, Duchi J, and Wainwright M (2015). Divide and conquer kernel ridge regression: A distributed algorithm with minimax optimal rates. The Journal of Machine Learning Research, 16, 3299-3340.