DOI QR코드

DOI QR Code

동해 방사성탄소동위원소 연구 현황과 전망

Current Status and Prospects Regarding Radiocarbon Studies in the East Sea

  • 김민경 (경북대학교 자연과학대학 지구시스템과학부)
  • Kim, Minkyoung (School of Earth System Sciences, College of Natural Sciences, Kyungpook National University)
  • 투고 : 2022.02.15
  • 심사 : 2022.03.02
  • 발행 : 2022.03.30

초록

Together with the development of measurement techniques, radiocarbon (14C) has been increasingly used as a key tool to investigate carbon cycling and associated biogeochemistry in the ocean. In this paper, the current status of radiocarbon studies in the East Sea (Japan Sea) is reviewed. Previously, spatiotemporal distribution and change of the water masses in the East Sea from 1979 to 1999 were investigated by using the 14C in the dissolved inorganic carbon (DIC). Researches on sinking particulate organic carbon (POC) revealed that POC in the deep ocean has more complex and heterogeneous origins than we expected. In particular, since 2011, Korean researchers have been collecting sinking particle samples for more than 10 years, so it is expected that 14C of POC will provide important information to understand carbon cycling in relation to climate change. Although the quantity of 14C data published in the East Sea is still limited, the importance and the future direction of using 14C to understand the biogeochemical mechanisms of carbon cycling and its role as a carbon reservoir in the East Sea are detailed herein.

키워드

과제정보

이 논문 작성에 도움을 주신 류예진, 심보람 씨, 그리고 원고를 읽고 유익한 조언을 주신 심사위원분들께 감사드립니다.

참고문헌

  1. Alves EQ, Macario K, Ascough P, Bronk Ramsey C (2018) The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Rev Geophys 56(1):278-305 https://doi.org/10.1002/2017rg000588
  2. Aramaki T, Senjyu T, Togawa O, Otosaka S, Suzuki T, Kitamaru T, Amano H, Volkov YN (2007) Circulation in the Northern Japan sea studied chiefly with radiocarbon. Radiocarbon 49(2):915-924 https://doi.org/10.1017/s0033822200042788
  3. Aramaki T, Tanaka SS, Kushibashi S, Kim YI, Kim CJ, Hong GH, Senjyu T (2013) Spatial distribution of radiocarbon in the southwestern Japan/East Sea immediately after bottom water renewal. Radiocarbon 55:1675-1682 https://doi.org/10.1017/s0033822200048591
  4. Arnold JR, Libby WF (1949) Age determinations by radiocarbon content: Checks with samples of known age. Science 110:678-680 https://doi.org/10.1126/science.110.2869.678
  5. Bao R, Blattmann TM, McIntyre C, Zhao M, Eglinton TI (2019a) Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth Planet Sci Lett 505:76-85. doi:10.1016/j.epsl.2018.10.013
  6. Bao R, McIntyre C, Zhao M, Zhu C, Kao SJ, Eglinton TI (2016) Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology 44:791-794 https://doi.org/10.1130/G37948.1
  7. Bao R, McNichol AP, Hemingway JD, Lardie Gaylord MC, Eglinton TI (2018a) Influence of different acid treatments on the radiocarbon content spectrum of sedimentary organic matter determined by rpo/accelerator mass spectrometry. Radiocarbon 61:395-413. doi:10.1017/rdc.2018.125
  8. Bao R, Strasser M, McNichol AP, Haghipour N, McIntyre C, Wefer G, Eglinton TI (2018b) Tectonically-triggered sediment and carbon export to the Hadal zone. Nat Commun 9:121. doi:10.1038/s41467-017-02504-1
  9. Bao R, Uchida M, Zhao M, Haghipour N, Montlucon D, McNichol A, Wacker L, Hayes JM, Eglinton TI (2018c) Organic carbon aging during across-shelf transport. Geophys Res Lett 45:8425-8434. doi:10.1029/2018gl078904
  10. Bao R, Zhao M, McNichol A, Galy V, McIntyre C, Haghipour N, Eglinton TI (2019b) Temporal constraints on lateral organic matter transport along a coastal mud belt. Organic Geochem 128:86-93. doi:10.1016/j.orggeochem.2019.01.007
  11. Bauer JE, Druffel ERM (1998) Ocean margins as a significant source of organic matter to the deep ocean. Nature 392:482-484 https://doi.org/10.1038/33122
  12. Bennett CL, Beukens RP, Clover MR, Gove HE, Liebert RB, Litherland AE, Purser KH, Sondheim WH (1977) Radiocarbon dating using electrostatic accelerators-negative ions provide the key. Science 198:508-510 https://doi.org/10.1126/science.198.4316.508
  13. Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-Sea Pt II 49:237-251
  14. Blattmann TM, Liu Z, Zhang Y, Zhao Y, Haghipour N, Montlucon DB, Plotze M, Eglinton TI (2019) Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366:742-745 https://doi.org/10.1126/science.aax5345
  15. Blattmann TM, Wessels M, McIntyre C, Eglinton TI (2018a) Projections for future radiocarbon content in dissolved inorganic carbon in Hardwater Lakes: a retrospective approach. Radiocarbon 60(3):791-800. doi:10.1017/RDC.2018.12
  16. Blattmann TM, Zhang Y, Zhao Y, Wen K, Lin S, Li J, Wacker L, Haghipour N, Plotze M, Liu Z, Eglinton TI (2018b) Contrasting fates of petrogenic and biospheric carbon in the South China Sea. Geophys Res Lett 45: 9077-9086 https://doi.org/10.1029/2018gl079222
  17. Broecker WS, Gerard R, Ewing M, Heezen BC (1960) Natural radiocarbon in the Atlantic Ocean. J Geophys Res 65(9):2903-2931 https://doi.org/10.1029/JZ065i009p02903
  18. Craig H (1957) The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and the sea. Tellus 9(1):1-17. doi:10.3402/tellusa.v9i1.9078
  19. Craig H (1969) Abyssal carbon and radiocarbon in the Pacific. J Geophys Res 74(23):5491-5506 https://doi.org/10.1029/JC074i023p05491
  20. DeVries T, Primeau F (2011) Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J Phys Oceanogr 41(12):2381-2401 https://doi.org/10.1175/JPO-D-10-05011.1
  21. Ding L, Ge T, Gao H, Luo C, Xue Y, Druffel ERM, Wang X (2018) Large variability of dissolved inorganic radiocarbon in the Kuroshio Extension of the northwest North Pacific. Radiocarbon 60(2):691-704. doi:10.1017/RDC.2017.143
  22. Druffel ERM, Bauer JE, Griffin S, Beaupre S, Hwang J (2008) Dissolved inorganic radiocarbon in the north Pacific Ocean and Sargasso Sea. Deep-Sea Res Pt I 55(4):451-459. doi:10.1016/j.dsr.2007.12.007
  23. Druffel ERM, Williams PM (1990) Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature 347:172-174 https://doi.org/10.1038/347172a0
  24. Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Bio geochem Cycles 21:GB4006. doi:10.1029/2006GB002907
  25. Dutta K, Prasad G, Ray D, Raghav S (2010) Decadal changes of radiocarbon in the surface bay of bengal: three decades after geosecs and one decade after WOCE. Radiocarbon 52(3):1191-1196. doi:10.1017/S0033822200046269
  26. Eglinton TI, Benitez-Nelson BC, Pearson A, McNichol AP, Bauer JE, Druffel ERM (1997) Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277:796-799. doi:10.1126/science.277.5327.796
  27. Eglinton TI, Eglinton G, Dupont L, Sholkovitz ER, Montlucon D, Reddy CM (2002) Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem Geophys Geosyst 3(8):1-27. doi:10.1029/2001GC000269
  28. Fagault Y, Tuna T, Rostek F, Bard E (2019) Radiocarbon dating small carbonate samples with the gas ion source of Aix-MICADAS. Nucl Instrum Methods Phys Res B 455:276-283. doi:10.1016/j.nimb.2018.11.018
  29. Gamo T, Horibe Y (1983) Abyssal circulation in the Japan Sea. J Oceanogr Soc Japan 39:220-230 https://doi.org/10.1007/BF02070392
  30. Gardner WD, Richardson MJ, Mishonov AV (2018) Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth Planet Sci Lett 482:126-144 https://doi.org/10.1016/j.epsl.2017.11.008
  31. Ge T, Luo C, Ren P , Zhang H, Chen Z, Sun S, Xu L, Wang X (2022) Decadal variations in radiocarbon in dissolved inorganic carbon (DIC) along a transect in the western North Pacific Ocean. J Geophys Res 127(2):e2021JC017845
  32. Ge T, Wang X, Zhang J, Luo C, Xue Y (2016) Dissolved inorganic radiocarbon in the Northwest Pacific continental margin. Radiocarbon 58(3):517-529. doi:10.1017/RDC.2016.23
  33. Gies H, Hagedorn F, Lupker M, Montlucon D, Haghipour N, van der Voort TS, Eglinton TI (2021) Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass. Biogeosciences 18:189-205. doi:10.5194/bg-18-189-2021
  34. Goni MA, Yunker MB, Macdonald RW, Eglinton TI (2005) The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar Chem 93:53-73 https://doi.org/10.1016/j.marchem.2004.08.001
  35. Graven H (2015) Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc Nat Acad Sci 112:9542-9545 https://doi.org/10.1073/pnas.1504467112
  36. Gruber N, Gloor M, Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Muller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cy 23:GB1005. doi:10.1029/2008GB003349
  37. Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV (2019) Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570:228-231. doi:10.1038/s41586-019-1280-6
  38. Herndl GJ, Reinthaler T (2013) Microbial control of the dark end of the biological pump. Nature Geosci 6:718-724 https://doi.org/10.1038/ngeo1921
  39. Honda MC, Kusakabe M, Nakabayashi S, Katagiri M (2000) Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope. Mar Chem 68:231-247 https://doi.org/10.1016/S0304-4203(99)00080-8
  40. Hong GH, Baskaran M, Lee HK, Kim SH (2008) Sinking Fluxes of Particulate U-Th Radionuclides in the East Sea (Sea of Japan). J Oceanogr 64:267-276 https://doi.org/10.1007/s10872-008-0021-5
  41. Honjo S, Manganini SJ, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res Pt I 29:609-625 https://doi.org/10.1016/0198-0149(82)90079-6
  42. Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progr Oceanogr 76:217-285 https://doi.org/10.1016/j.pocean.2007.11.003
  43. Hua Q, Turnbull J, Santos G, Rakowski A, Ancapichun S, De Pol-Holz R, Turney C (2021) Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 1-23. doi: 10.1017/RDC.2021.95
  44. Hwang J (2012) Radiocarbon for studies of organic matter cycling in the Ocean. J Korean Soc Oceanogr 17(3):189-201 (in Korean)
  45. Hwang J, Druffel ERM, Eglinton TI (2010) Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon contents in sinking particles. Global Biogeochem Cy 24:GB4016. doi: 10.1029/2010GB003802
  46. Hwang J, Kim M, Manganini SJ, McIntyre CP, Haghipour N, Park J, Krishfield RA, Macdonald RW, McLaughlin FA, Eglinton TI (2015) Temporal and spatial variability of particle transport in the deep Arctic Canada Basin. J Geophys Res 120:2784-2799 https://doi.org/10.1002/2014JC010643
  47. Hwang JSJ, Manganini J, Park DB, Montlucon JMT, Eglinton TI (2017) Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin. J Geophys Res 122:4539-4553 https://doi.org/10.1002/2016JC012549
  48. Ka ng DJ, Pa rk SY, Kim YG, Kim K, Kim KR (2003) A moving-boundary box model (MBBM) for oceans in change: an application to the East/Japan Sea. Geophys Res Lett 30(6):1299. doi:10.1029/2002GL016486
  49. Kawamura K, Matsumoto K, Uchida M, Shibata Y (2010) Contributions of modern and dead organic carbon to individual fatty acid homologues in spring aerosols collected from northern Japan. J Geophys Res 115:D22310 https://doi.org/10.1029/2010jd014515
  50. Key R (1996) WOCE pacific ocean radiocarbon program. Radiocarbon 38(3):415-423 https://doi.org/10.1017/s003382220003006x
  51. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem Cy 18:GB4031 https://doi.org/10.1029/2004GB002247
  52. Khatiwala S, Primeau F, Holzer M (2012) Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet Sc Lett 325:116-125 https://doi.org/10.1016/j.epsl.2012.01.038
  53. Kim HJ, Kim D, Hyeong K, Hwang J, Yoo CM, Ham DJ, Seo I (2015) Evaluation of resuspended sediments to sinking particles by benthic disturbance in the clarion-clipperton nodule fields. Mar Geo Geotechnol 33(2):160-166. doi:10.1080/1064119X.2013.815675
  54. Kim M, Hwang J, Eglinton TI, Druffel ERM (2020a) Lateral particle supply as a key vector in the oceanic carbon cycle. Global Biogeochem Cy 34(9):e2020GB006544. doi:10.1029/2020GB006544
  55. Kim M, Hwa ng J, Rho T, Lee T, Ka ng DJ, Cha ng KI, Noh S, Joo H, Kwak JH, Kang CK, Kim KR (2017) Biogeochemical properties of sinking particles in the southwestern pa rt of the Ea st Sea (Ja pa n Sea ). J Ma rine Syst 167:33-42 https://doi.org/10.1016/j.jmarsys.2016.11.001
  56. Kim M, Kim YI, Hwang J, Choi KY, Kim CJ, Ryu Y, Park JE, Pa rk KA, Pa rk JH, Na m S, Ha ghipour N, Eglinton TI (2020b) Influence of sediment resuspension on the biological pump of the southwestern East Sea (Japan Sea). Front Earth Sci 8(144). doi:10.3389/feart.2020.00144
  57. Kumamoto Y, Aramaki T, Watanabe S, Yoneda M, Shobata Y, Togawa O, Morita M, Shitashima K (2008) Temporal and spatial variations of radiocarbon on Japan Sea bottom water. J Oceanogr 64:429-441 https://doi.org/10.1007/s10872-008-0036-y
  58. Kumamoto Y, Murata A, Kawano T, Watanabe S, Fukasawa M (2013) Decadal changes in bomb-produced radiocarbon in the Pacific Ocean from the 1990s to 2000s. Radiocarbon 55(3-4):1641-1650. doi:10.2458/azu_js_rc.55.16238
  59. Kumamoto Y, Yoneda M, Shibata Y, Kume H, Tanaka A, Uehiro T, Morita M, Shitashima K (1998) Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement. Geophys Res Lett 25(5):651-654 https://doi.org/10.1029/98GL00359
  60. Lauvset SK, Lange N, Tanhua T, Bittig HC, Olsen A, Kozyr A, Alvarez M, Becker S, Brown PJ, Carter BR, da Cunha LC, Feely RA, van Heuven S, Hoppema M, Ishii M, Jeansson E, Jutterstrom S, Jones SD, Karlsen MK, Monaco CL, Michaelis P, Murata A, Perez FF, Pfeil B, Schirnick C, Steinfeldt R, Suzuki T, Tilbrook B, Velo A, Wanninkhof R, Woosley RJ, Key RM (2021) An updated version of the global interior ocean biogeochemical data product, GLODAPv2. 2021. Earth Syst Sci Data 13(12):5565-5589 https://doi.org/10.5194/essd-13-5565-2021
  61. Lee H, Dlugokencky EJ, Turnbull JC, Lee S, Lehman SJ, Miller JB, Petron G, Lim JS, Lee GW, Lee SS, Park YS (2020a) Observations of atmospheric 14CO2 at Anmyeondo GAW station, South Korea: implications for fossil fuel CO2 and emission ratios. Atmos Chem Phys 20(20):12033-12045 https://doi.org/10.5194/acp-20-12033-2020
  62. Lee SH, Park SH, Kong M, Kim YS (2020b) A new compact AMS facility at the Dongguk University. Nucl Instrum Methods Phys Res B 465:15-18 https://doi.org/10.1016/j.nimb.2019.12.027
  63. Levin I, Hesshaimer V (2000) Radiocarbon-a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69-80 https://doi.org/10.1017/s0033822200053066
  64. Li L, Chen B, Luo Y, Xia J, Qi D (2022) Factors controlling acidification in intermediate and deep/bottom layers of the Japan/East Sea. J Geophys Res 127:e2021JC017712. doi:10.1029/2021JC017712
  65. Libby WF (1946) Atmospheric helium three and radiocarbon from cosmic radiation. Phys Rev 69(11-12):671-672. doi: 10.1103/PhysRev.69.671.2
  66. Libby WF (1955) Radiocarbon dating. University of Chicago Press, Chicago, 175 p
  67. McIntyre CP, Wacker L, Haghipour N, Blattmann TM, Fahrni S, Usman M, Eglinton TI, Synal HA (2017) Online 13C and 14C gas measurements by EA-IRMS-AMS at ETH Zurich. Radiocarbon 59:893-903 https://doi.org/10.1017/rdc.2016.68
  68. McNichol AP, Aluwihare LI (2007) The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem Rev 107:433-466
  69. Na T, Hwang J, Kim S-Y, Jeong S, Rho TK and Lee T (2022) Large Increase in dissolved inorganic carbon in the East Sea (Japan Sea) From 1999 to 2019. Front Mar Sci 9:825206. doi:10.3389/fmars.2022.825206
  70. Nakamura T, Kojima S, Ohta T, Oda H, Ikeda A, Okuno M, Kretschmer W (1997) Isotopic analysis and cycling of dissolved inorganic carbon at Lake Biwa, Central Japan. Radiocarbon 40(2):933-944. doi:10.1017/S0033822200018907
  71. Nelson DE, Korteling RG, Stott WR (1977) 14C detection at natural concentrations. Science 198:507-508 https://doi.org/10.1126/science.198.4316.507
  72. Otosaka S, Tanaka T, Togawa O, Amano H, Karasev EV, Minakawa M, Noriki S (2008) Deep sea circulation of particulate organic carbon in the Japan Sea. J Oceanogr 64:911-923 https://doi.org/10.1007/s10872-008-0075-4
  73. Otosaka S, Togawa O, Baba M, Karasev E, Volkov TN, Omata N, Noriki S (2004) Lithogenic flux in the Japan Sea measured with sediment traps. Mar Chem 91:143-163 https://doi.org/10.1016/j.marchem.2004.06.006
  74. Polach HA (1992) In radiocarbon after four decades. In: Taylor RE, Long A, Kra R (eds) An interdisciplinary perspective. Springer-Verlag, New York, pp 198-213
  75. Santos GM, Southon JR, Griffin S, Beaupre SR, Druffel ERM (2007) Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nucl Instr Meth B 259:293-302 https://doi.org/10.1016/j.nimb.2007.01.172
  76. Schuur EAG, Carbone MS, Pries CEH, Hopkins FM, Natali SM (2016) Radiocarbon in terrestrial systems. In: Schuur EAG, Druffel E, Trumbore SE (eds) Radiocarbon and climate change. Springer, Switzerland, pp 167-220
  77. Sherrell RM, Field MP, Y Gao (1998) Temporal variability of suspended mass and composition in the Northeast Pacific water column: relationships to sinking flux and lateral advection. Deep-Sea Res Pt II 45:733-761 https://doi.org/10.1016/S0967-0645(97)00100-8
  78. Sim BR, Kang DJ, Park YG, Kim KR (2014) Spatial and temporal variation of dissolved inorganic radiocarbon in the East Sea. Ocean Polar Res 36(2):111-119. doi:10.4217/OPR.2014.36.2.111
  79. Skinner LC, Bard E (2022) Radiocarbon as a dating tool and tracer in palaeoceanography. Rev Geophys 60(1):e2020 RG000720
  80. Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355-363 https://doi.org/10.1017/S0033822200003672
  81. Stuiver M, Quay PD (1981) Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sc Lett 53(3):349-362. doi:10.1016/0012-821x(81)90040-6
  82. Subt C, Fangman KA, Wellner JS, Rosenheim BE (2016) Sediment chronology in Antarctic deglacial sediments: reconciling organic carbon 14C ages to carbonate 14C ages using ramped PyrOx. Holocene 26(2):265-273. doi:10.1177/0959683615608688
  83. Syna l HA, Stocker M, Suter M (2007) MICADAS: a new compact radiocarbon AMS system. Nucl Instrum Methods Phys Res B 259:7-13 https://doi.org/10.1016/j.nimb.2007.01.138
  84. Takahashi HA, Nakamura T, Tsukamoto H, Kazahaya K, Handa H, Hirota A (2013) Radiocarbon dating of groundwater in granite fractures in Abukuma Province, Northeast Japan. Radiocarbon 55(02):894-904. doi:10.1017/s0033822200058057
  85. Tao S, Eglinton TI, Montlucon DB, McIntyre C, Zhao M (2015) Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance. Earth Planet Sci Lett 414:77-86. doi:10.1016/j.epsl.2015.01.004
  86. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Science, Oxford, 312 p
  87. Toggweiler JR, Druffel ERM, Key RM, Galbraith ED (2019) Upwelling in the ocean basins north of the ACC: 1. On the Upwelling Exposed by the Surface Distribution of Δ14C. J Geophys Res-Oceans 124:2591-2608 https://doi.org/10.1029/2018JC014794
  88. Touratier F, Azouzi L, Goyet C (2007) CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus B 59(2):318-325 https://doi.org/10.1111/j.1600-0889.2006.00247.x
  89. Tsunogai S (2000) North Pacific water's larger potential sink capacity for absorbing anthropogenic CO2 and the processes recovering it. In: Handa N, Tanoue E, Hama T (eds) Dynamics and characterization of marine organic matter. Springer, pp 533-560
  90. Tsunogai S, Kawada K, Watanabe S, Aramaki T (2003) CFCs indicating renewal of the Japan Sea Deep Water in winter 2000-2001. J Oceanogr 59:685-693 https://doi.org/10.1023/b:joce.0000009597.33460.d7
  91. Tsunogai S, Watanabe YW, Harada K, Watanabe S, Saito S, Nakajima M (1993) Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. In: Teramoto T (ed) Deep ocean circulation, physics and chemical aspects, Elsevier, Switzerland, pp 105-119
  92. Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strength and efficiencies of in ocean-driven circulation atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, Geophysical Monogr. Ser. 32, AGU, Washington DC, pp 99-110
  93. Wacker L, Bonani G, Friedrich M, Hajdas I, Kromer B, Nemec M, Ruff M, Suter M, Synal HA, Vockenhuber C (2010) MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52:252-262 https://doi.org/10.1017/s0033822200045288
  94. Wacker L, Fahrni SM, Hajdas I, Molnar M, Synal HA, Szidat S, Zhang YL (2013) A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl Instrum Methods Phys Res B 294:315-319 https://doi.org/10.1016/j.nimb.2012.02.009
  95. Wakeham SG, Canuel EA, Lerberg EJ, Mason P, Sampere TP, Bianchi TS (2009) Partitioning of organic matter in continental margin sediments among density fractions. Mar Chem 115(3-4):211-225 https://doi.org/10.1016/j.marchem.2009.08.005
  96. Welte C, Hendriks L, Wacker L, Haghipour N, Eglinton TI, Gunther D Synal HA (2018) Towards the limits: analysis of microscale 14C samples using EA-AMS. Nucl Inst Meth B 437:66-74. doi:10.1016/j.nimb.2018.09.046
  97. Wu Y, Fallon S, Cantin N, Lough J (2021) Surface ocean radiocarbon from a porites coral record in the great barrier reef: 1945-2017. Radiocarbon 63(4):1193-1203. doi:10.1017/RDC.2020.141
  98. Yoon ST, Chang KI, Nam S, Rho TK, Kang D-J, Lee T, Park K-A, Lobanov V, Kaplunenko D, Tishchenko P, Kim K-R (2018) Re-initiation of bottom water formation in the Ea st Sea (Ja pa n Sea ) in a wa rming world. Sci Rep 8:1576. doi:10.1038/s41598-018-19952-4
  99. Yu M, Eglinton TI, Haghipour N, Montlucon DB, Wacker L, Wang Z, Jin G, Zhao M (2019) Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport. Geochim Cosmochim Acta 262:78-91. doi:10.1016/j.gca.2019.07.040