STRONG AND Δ-CONVERGENCE THEOREMS FOR A COUNTABLE FAMILY OF MULTI-VALUED DEMICONTRACTIVE MAPS IN HADAMARD SPACES

Ma'aruf Shehu Minjibir ${ }^{1}$ and Sani Salisu ${ }^{2}$
${ }^{1}$ African University of Science and Technology, Abuja, Nigeria
Bayero University, Kano, Nigeria
e-mail: msminjibir.mth@buk.edu.ng
${ }^{2}$ African University of Science and Technology, Abuja, Nigeria e-mail: ssalisu@aust.edu.ng

Abstract

In this paper, iterative algorithms for approximating a common fixed point of a countable family of multi-valued demicontractive maps in the setting of Hadamard spaces are presented. Under different mild conditions, the sequences generated are shown to strongly convergent and Δ-convergent to a common fixed point of the considered family, accordingly. Our theorems complement many results in the literature.

1. Introduction

The class of (single-valued) demicontractive maps was introduced by Hicks and Kubicek in [15] as a proper superclass of the class of strictly pseudocontractive maps ([4]) which is itself a superclass of the class of nonexpansive maps. In [7], Chidume et al. introduced a multi-valued analogue of strictly pseudocontractive map. They showed that a Krasnoseslkii-type sequence converges to a fixed point of a strictly pseudocontractive map T in a Hilbert space. Chidume and Ezeora [8] also proved strong convergence theorems for a finite family of multi-valued strictly pseudocontractive maps in the setting of Hilbert spaces.

[^0]Several results concerning finding solutions of equations/inclusions (such as fixed point equations/inclusions, zeros of monotone maps) have been obtained in metric spaces that do not necessarily possess linear structure. Some of these results can be found in, for example, Kirk [19, 20, Reich and Shafrir [25], Kohlenbach and Leustean [21], Chaoha and Pho-on [5], Okeke et al. [24], Dhompongsa and Panyanak [10], Saejung [26], Lerkchaiyaphum and Phuengrattana [22], Khan and Abbas [16], Eskandani et al. [14], Eskandani and Raeisi [13], Kim et al. [17], Tang et al. [27] and Asidi et al. [2]. Dhompongsa et al. [9], proved strong convergence theorems for fixed points of a countable family of multi-valued nonexpansive maps in the setting of $C A T(0)$ spaces. They proved the following theorem, H denotes the Hausdorff metric and $K(C)$ denotes the family of nonempty compact subsets of C.

Theorem 1.1. ([9]) Let C be a nonempty, closed and convex subset of a complete $C A T(0)$ space X and $U_{n}, U: C \rightarrow K(C)$ be nonexpansive such that $H\left(U_{n}, U\right) \rightarrow 0$ uniformly on bounded subsets of C, $\operatorname{Fix}(U)=\bigcap_{n=1}^{\infty} F i x\left(U_{n}\right)$ and $U_{n}(p)=\{p\}$ for all $p \in F i x(U)$. Suppose that $u, z_{1} \in C$ are arbitrarily chosen and $\left\{z_{n}\right\}$ is defined by

$$
z_{n+1}=\alpha_{n} u \oplus\left(1-\alpha_{n}\right) u_{n}, \quad u_{n} \in U_{n}\left(z_{n}\right)
$$

such that $d\left(u_{n}, u_{n+1}\right) \leq d\left(z_{n}, z_{n+1}\right)+\varepsilon_{n}$ for all $n \in \mathbb{N}$, where $\sum_{n=1}^{\infty} \varepsilon_{n}<\infty$ and $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ satisfying

$$
\lim \alpha_{n}=0 ; \sum_{n} \alpha_{n}=\infty ; \text { and } \sum_{n}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty\left(\text { or } \lim \alpha_{n} / \alpha_{n+1}=1\right)
$$

Then $\left\{z_{n}\right\}$ converges strongly to the unique fixed point of U closest to u.
Also in [6], Chidume et al. considered a finite family of demicontractive mappings in a complete CAT(0) space. They developed an iterative algorithm and proved both Δ and strong convergence of the sequence obtained to a common fixed point of the family. They proved the following result.

Theorem 1.2. ([6]) Let K be a nonempty, closed and convex subset of a complete $C A T(0)$ space. Let $T_{i}: K \rightarrow C B(K), i=1,2, \cdots, m$, be a family of demicontractive mappings with constants $k_{i} \in(0,1), i=1, \cdots m$ such that $\bigcap_{i=1}^{m} F\left(T_{i}\right) \neq \emptyset$. Suppose for all $i, T_{i}(p)=\{p\}$ for all $p \in \bigcap_{i=1}^{m} F\left(T_{i}\right)$. Let a sequence $\left\{x_{n}\right\}$ be define by

$$
\left\{\begin{array}{l}
x_{1} \in K \tag{1.1}\\
x_{n+1}=\alpha_{0} x_{n} \oplus \alpha_{1} y_{n}^{1} \oplus \alpha_{2} y_{n}^{2} \oplus \cdots \oplus \alpha_{m} y_{n}^{m} ; \quad n \geq 1 \\
y_{n}^{i} \in T_{i} x_{n}, \alpha_{0} \in(k, 1), \alpha_{i} \in(0,1)
\end{array}\right.
$$

where $k=\max \left\{k_{i}, i=1,2, \cdots, m\right\}, \sum_{i=0}^{m} \alpha_{i}=1$ and $F\left(T_{i}\right)$ denotes the set of fixed points of T_{i}. Then for every $i, \lim _{n \rightarrow \infty} \operatorname{dist}\left(p, T_{i} x_{n}\right)$ exists for every $p \in \bigcap_{i=1}^{m} F\left(T_{i}\right)$. If in addition T_{i} is Δ-demiclosed at 0 for $i=1, \cdots, m$, then $\left\{x_{n}\right\}$ is Δ-convergent to a point $p \in \bigcap_{i=1}^{m} F\left(T_{i}\right)$. Furthermore, if at least one of the T_{i} 's is semi-compact, then the convergence is strong.

Our objective in this paper is two fold: the first is to develop an iterative algorithm and prove Δ and strong convergence of the resulting sequence to a common fixed point of a finite family of multi-valued demicontractive maps in a Hadamard space setting. The second is to develop an iterative algorithm and prove Δ and strong convergence of the resulting sequence to a common fixed point of a countable family of multi-valued demicontractive maps also in Hadamard space setting. The algorithm developed is fashioned after the one of Akbar and Eslamian [1] for a finite family of a subclass of quasi-nonexpansive mappings.

2. PRELIMINARIES

Given a metric space (X, d), a geodesic from x to y is a map $\gamma:[0, l] \subset$ $\mathbb{R} \rightarrow X$, for some $l>0$, such that $\gamma(0)=x, \gamma(l)=y ; d(\gamma(t), \gamma(s))=|t-s|$, $\forall t, s \in[0, l]$. In particular γ is an isometry and $d(x, y)=l$. The image of $\gamma, \gamma([0, l])$, is called a geodesic segment joining x and y. When the geodesic is unique, it is denoted by $[x, y]$. For $x, y \in X$ having unique geodesic and for any $\alpha \in[0,1]$, we denote by $\alpha x \oplus(1-\alpha) y$ the unique vector z in $[x, y]$ satisfying $d(x, z)=\alpha d(x, y)$ and $d(z, y)=(1-\alpha) d(x, y)$. If for every pair of points x, y in the space (X, d) there exists a geodesic joining them, then the space is called a geodesic space and if the geodesic is unique for each such pair, it is called a uniquely geodesic space. We shall say a subset C of X is convex if for every pair of points x, y in C, every segment joining x and y is contained in C.

A geodesic triangle $\triangle\left(x_{1}, x_{2}, x_{3}\right)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and three geodesic segmentseach for a pair of the vertices (these segments are called edges of the triangle). A comparison triangle for a geodesic triangle $\triangle\left(x_{1}, x_{2}, x_{3}\right)$ in (X, d) is a triangle $\bar{\triangle}\left(x_{1}, x_{2}, x_{3}\right)$ which we shall denote by $\triangle\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$, such that $d_{\mathbb{R}^{2}}\left(\bar{x}_{i}, \bar{x}_{j}\right)=d\left(x_{i}, x_{j}\right)$ for $i, j \in\{1,2,3\}$. A geodesic space (X, d) is called a $C A T(0)$ space if every geodesic triangle \triangle in (X, d) having comparison triangle \triangle, the inequality

$$
d(x, y) \leq d_{\mathbb{R}^{2}}(\bar{x}, \bar{y})
$$

holds for all points x, y in \triangle and, respective, comparison points \bar{x}, \bar{y} in $\bar{\triangle}$ (where a point $\bar{z} \in[\bar{x}, \bar{y}]$ is called a comparison point of a point $z \in[x, y]$
if $\left.d_{\mathbb{R}^{2}}(\bar{x}, \bar{z})=d(x, z)\right)$. A complete $C A T(0)$ space is called Hadamard space. Further details on general $C A T(\kappa)$ spaces can be found in, for example, [3].

For a bounded sequence $\left\{x_{n}\right\}$ in a metric space (X, d), let

$$
r\left(x,\left\{x_{n}\right\}\right):=\limsup _{n} d\left(x, x_{n}\right), \quad x \in X .
$$

The asymptotic radius $r\left(\left\{x_{n}\right\}\right)$ of $\left\{x_{n}\right\}$ is defined as

$$
r\left(\left\{x_{n}\right\}\right):=\inf \left\{r\left(x,\left\{x_{n}\right\}\right): x \in X\right\}
$$

and the asymptotic centre $A\left(\left\{x_{n}\right\}\right)$ of $\left\{x_{n}\right\}$ is the set

$$
A\left(\left\{x_{n}\right\}\right):=\left\{x \in X: r\left(x,\left\{x_{n}\right\}\right)=r\left(\left\{x_{n}\right\}\right)\right\} .
$$

Remark 2.1. It is known (see, e.g., [11) that in a $C A T(0)$ space, $A\left(\left\{x_{n}\right\}\right)$ is a singleton set.

Let (X, d) be a metric space. A sequence $\left\{x_{n}\right\} \subset X$ is said to be Δ convergent (see [23]) to $x \in X$ if $\lim \sup d\left(x_{n_{k}}, x\right) \leq \lim \sup d\left(x_{n_{k}}, y\right)$, for every $\left\{x_{n_{k}}\right\}$ subsequence of $\left\{x_{n}\right\}$ and for every $y \in X$. In any $C A T(0)$ space, by virtue of Remark 2.1, if the sequence $\left\{x_{n}\right\}$ is bounded, then Δ-convergence of $\left\{x_{n}\right\}$ to x is equivalent to saying that x is the unique asymptotic centre for every subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$. We write $\Delta-\lim _{n} x_{n}=x$ or $x_{n} \xrightarrow{\Delta} x$ to mean $\left\{x_{n}\right\}$ is Δ-convergent to x and we call x the Δ-limit of $\left\{x_{n}\right\}$. When a sequence $\left\{x_{n}\right\}$ converges to x in the usual sense, that is when $d\left(x_{n}, x\right) \rightarrow 0$, we say it is strongly convergent to x, denoted $x_{n} \rightarrow x$.

Let (X, d) be a metric space. We denote the family of nonempty closed and bounded subsets of X by $\mathcal{C B}(X)$ and define $\operatorname{dist}(b, A):=\inf _{a \in A} d(b, a)$ for any $b \in X$ and for any $A \subseteq X$. Let d_{H} denote the Hausdorff metric, that is the map $d_{H}: \mathcal{C B}(X) \times \mathcal{C B}(X) \rightarrow \mathbb{R}$ defined by

$$
d_{H}(B, D):=\max \left\{\sup _{b \in B} \operatorname{dist}(b, D), \sup _{d \in D} \operatorname{dist}(d, B)\right\}, \forall B, D \in \mathcal{C B}(X)
$$

Let $T: X \rightarrow \mathcal{C B}(X)$ be multi-valued map. We denote by $\mathcal{F}(T)$ the set of all fixed points of T, that is, $\mathcal{F}(T):=\{p \in X: p \in T p\}$. The map T is called: nonexpansive if

$$
d_{H}(T x, T y) \leq d(x, y), \forall x, y \in X
$$

quasinonexpansive if for any $p \in \mathcal{F}(T)$,

$$
d_{H}(T x, T p) \leq d(x, p), \forall x \in X
$$

demicontractive if there exists $k \in[0,1)$ such that for any $p \in \mathcal{F}(T)$,

$$
d_{H}(T x, T p)^{2} \leq d(x, p)^{2}+k \operatorname{dist}(x, T x)^{2}, \forall x \in X
$$

In the sequel, we shall say that the map T has demiclosedness-type property if for any sequence $\left\{x_{n}\right\} \subseteq D$ and $x \in D,\left\{x_{n}\right\} \Delta$-converges to x and $\operatorname{dist}\left(x_{n}, T x_{n}\right) \rightarrow 0$, imply $x \in F(T)$.

Lemma 2.2. ([10]) Let (X, d) be a CAT(0) space. Let $x, y, z \in X$ and $t \in$ $[0,1]$. Then
(i) $d((1-t) x \oplus t y, z) \leq(1-t) d(x, z)+t d(y, z)$,
(ii) $d((1-t) x \oplus t y, z)^{2} \leq(1-t) d(x, z)^{2}+t d(y, z)^{2}-t(1-t) d(x, y)^{2}$.

Lemma 2.3. ([12]) Let D be a nonempty, closed and convex subset of a Hadamard space (X, d) and $\left\{x_{n}\right\}$ be a bounded sequence in D. Then the asymptotic centre $A\left(\left\{x_{n}\right\}\right)$ of $\left\{x_{n}\right\}$ is in D.

Lemma 2.4. (10]) If $\left\{x_{n}\right\}$ is a bounded sequence in a Hadamard space (X, d) with $A\left(\left\{x_{n}\right\}\right)=\{x\}$ and $\left\{u_{n}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ with $A\left(\left\{u_{n}\right\}\right)=\{u\}$ and the sequence $\left\{d\left(x_{n}, u\right)\right\}$ converges, then $x=u$.

Lemma 2.5. ([18]) Every bounded sequence in a Hadamard space has a Δ convergent subsequence.

3. Main results

We first give the algorithm for a finite family of demicontractive maps. Let (X, d) be a Hadamard space and let $D \subseteq X$ be closed, convex and nonempty. Let $T_{i}: D \rightarrow \mathcal{C B}(D)$ be multi-valued demicontractive mappings with constants $\left\{k_{i}\right\} \subset(0,1), m \in \mathbb{N}, i=1, \cdots, m$. Define a sequence $\left\{x_{n}\right\}$ in D by

$$
\left\{\begin{array}{l}
x_{1} \in D ; \tag{3.1}\\
y_{n}^{(0)}=x_{n} ; \\
y_{n}^{(i)}=a_{n i} y_{n}^{(i-1)} \oplus\left(1-a_{n i}\right) z_{n}^{(i-1)}, \quad i=1, \cdots, m-1 ; \\
x_{n+1}=a_{n m} y_{n}^{(m-1)} \oplus\left(1-a_{n m}\right) z_{n}^{(m-1)}, \quad n=1,2, \cdots,
\end{array}\right.
$$

where $z_{n}^{(i-1)} \in T_{i} y_{n}^{(i-1)}, a_{n i} \in\left[k_{i}, 1\right], n \in \mathbb{N}, i=1, \cdots, m$.
Lemma 3.1. Let (X, d) be a $C A T(0)$ space and let $D \subseteq X$ be nonempty, closed and convex. Let $T_{i}: D \rightarrow \mathcal{C B}(D)$ be multi-valued demicontractive mappings with constants $\left\{k_{i}\right\} \subset(0,1), m \in \mathbb{N}, i=1, \cdots, m$ and $\left\{x_{n}\right\}$ be defined by iterative process (3.1). Suppose $\mathcal{F}:=\bigcap_{i=1}^{m} F\left(T_{i}\right) \neq \emptyset$ and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and for all $i \in\{1,2, \cdots, m\}$. Then, $\lim _{n} d\left(x_{n}, p\right)$ exists for all $p \in \mathcal{F}$.

Proof. Let $p \in \mathcal{F}$ and $i \in\{1, \cdots, m-1\}$. By Lemma 2.2 (ii), the scheme (3.1) and the assumptions on T_{i} 's we have

$$
\begin{aligned}
& d\left(y_{n}^{(i)}, p\right)^{2} \\
& \leq a_{n i} d\left(y_{n}^{(i-1)}, p\right)^{2}+\left(1-a_{n i}\right) d\left(z_{n}^{(i-1)}, p\right)^{2}-a_{n i}\left(1-a_{n i}\right) d\left(y_{n}^{i-1}, z_{n}^{(i-1)}\right)^{2} \\
& \leq a_{n i} d\left(y_{n}^{(i-1)}, p\right)^{2}+\left(1-a_{n i}\right) \operatorname{dist}\left(z_{n}^{(i-1)}, T_{i} p\right)^{2}-a_{n i}\left(1-a_{n i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& \leq a_{n i} d\left(y_{n}^{(i-1)}, p\right)^{2}+\left(1-a_{n i}\right) d_{H}\left(T_{i} y_{n}^{(i-1)}, T_{i} p\right)^{2}-a_{n i}\left(1-a_{n i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& \leq a_{n i} d\left(y_{n}^{(i-1)}, p\right)^{2}+\left(1-a_{n i}\right)\left[d\left(y_{n}^{(i-1)}, p\right)^{2}+k_{i} d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2}\right] \\
& \quad-a_{n i}\left(1-a_{n i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& =d\left(y_{n}^{(i-1)}, p\right)^{2}-\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2}, \quad i=1, \cdots, m-1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
d\left(x_{n+1}, p\right)^{2} \leq & a_{n m} d\left(y_{n}^{(m-1)}, p\right)^{2}+\left(1-a_{n m}\right) d\left(z_{n}^{(m-1)}, p\right)^{2} \\
& -a_{n m}\left(1-a_{n m}\right) d\left(y_{n}^{m-1}, z_{n}^{(m-1)}\right)^{2} \\
\leq & a_{n m} d\left(y_{n}^{(m-1)}, p\right)^{2}+\left(1-a_{n m}\right) \operatorname{dist}\left(z_{n}^{(m-1)}, T_{m} p\right)^{2} \\
& -a_{n m}\left(1-a_{n m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
\leq & a_{n m} d\left(y_{n}^{(m-1)}, p\right)^{2}+\left(1-a_{n m}\right) d_{H}\left(T_{m} y_{n}^{(m-1)}, T_{m} p\right)^{2} \\
& -a_{n m}\left(1-a_{n m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
\leq & a_{n m} d\left(y_{n}^{(m-1)}, p\right)^{2}+\left(1-a_{n m}\right)\left[d\left(y_{n}^{(m-1)}, p\right)^{2}\right. \\
& \left.+k_{m} d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2}\right]-a_{n m}\left(1-a_{n m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
\leq & d\left(y_{n}^{(m-1)}, p\right)^{2}-\left(1-a_{n m}\right)\left(a_{n m}-k_{m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} .
\end{aligned}
$$

So, from the above two inequalities, we have

$$
\begin{aligned}
d\left(x_{n+1}, p\right)^{2} \leq & d\left(y_{n}^{(m-1)}, p\right)^{2}+\left(1-a_{n m}\right)\left(k_{m}-a_{n m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
= & d\left(y_{n}^{(m-1)}, p\right)^{2}-\left(1-a_{n m}\right)\left(a_{n m}-k_{m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
\leq & d\left(y_{n}^{(m-2)}, p\right)^{2}-\left(1-a_{n m}\right)\left(a_{n m-1}-k_{m-1}\right) d\left(y_{n}^{(m-2)}, z_{n}^{(m-2)}\right)^{2} \\
& -\left(1-a_{n m}\right)\left(a_{n m}-k_{m}\right) d\left(y_{n}^{(m-1)}, z_{n}^{(m-1)}\right)^{2} \\
& \vdots \\
\leq & d\left(y_{n}^{(m-3)}, p\right)^{2}-\sum_{i=m-2}^{m}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} .
\end{aligned}
$$

Inductively, we obtain that

$$
\begin{aligned}
d\left(x_{n+1}, p\right)^{2} & \leq d\left(y_{n}^{(0)}, p\right)^{2}-\sum_{i=1}^{m}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& =d\left(x_{n}, p\right)^{2}-\sum_{i=1}^{m}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& \leq d\left(x_{n}, p\right)^{2} .
\end{aligned}
$$

This implies that $\lim _{n} d\left(x_{n}, p\right)$ exists (in \mathbb{R}).
Theorem 3.2. Let $X, D,\left\{T_{i}\right\}, \mathcal{F},\left\{k_{i}\right\},\left\{a_{n i}\right\}$ and $\left\{x_{n}\right\}$ be as in Lemma 3.1. Let $\liminf _{n} a_{n i} \in\left(k_{i}, 1\right)$ for each $i \in\{1, \cdots, m\}$ and let T_{1}, \cdots, T_{m} be Lipschitzian maps. Then $\lim _{n} \operatorname{dist}\left(x_{n}, T_{i} x_{n}\right)=0$ for all $i=1, \cdots, m$.
Proof. As in the proof of Lemma 3.1,

$$
\sum_{i=1}^{m}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \leq d\left(x_{n}, p\right)^{2}-d\left(x_{n+1}, p\right)^{2}
$$

and $\lim _{n} d\left(x_{n}, p\right)$ exists for all $p \in \mathcal{F}$. Thus

$$
\lim _{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2}=0
$$

for all $i=1, \cdots, m$.
Since $\liminf _{n} a_{n i} \in\left(k_{i}, 1\right)$ for each $i \in\{1, \cdots, m\}$, it follows that

$$
\begin{equation*}
\lim _{n} d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)=0 \text { for each } i=1, \cdots, m . \tag{3.2}
\end{equation*}
$$

Now, let $i \in\{1, \cdots, m\}$. Then,

$$
\begin{aligned}
& d\left(x_{n}, z_{n}^{(i-1)}\right) \\
& =d\left(y_{n}^{(0)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, y_{n}^{(1)}\right)+d\left(y_{n}^{(1)}, y_{n}^{(2)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, y_{n}^{(2)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, z_{n}^{(1)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \vdots \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, z_{n}^{(1)}\right)+\cdots+d\left(y_{n}^{(i-2)}, z_{n}^{(i-2)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq \sum_{k=1}^{i} d\left(y_{n}^{(k-1)}, z_{n}^{(k-1)}\right) .
\end{aligned}
$$

This and (3.2) imply that

$$
\begin{equation*}
\lim _{n} d\left(x_{n}, z_{n}^{(i-1)}\right)=0 \text { for each } i=1, \cdots, m . \tag{3.3}
\end{equation*}
$$

Using $d\left(x_{n}, w_{n}^{i}\right) \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+d\left(z_{n}^{(i-1)}, w_{n}^{i}\right)$, we obtain

$$
\operatorname{dist}\left(x_{n}, T_{i} x_{n}\right) \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+d\left(z_{n}^{(i-1)}, w_{n}^{i}\right), \quad \forall w_{n}^{i} \in T_{i} x_{n} .
$$

Thus, using the fact that T_{i} is L_{i}-Lipschitzian for each $i \in 1, \cdots, m$, we have the following:

$$
\begin{aligned}
\operatorname{dist}\left(x_{n}, T_{i} x_{n}\right) & \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+\operatorname{dist}\left(z_{n}^{(i-1)}, T_{i} x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+d_{H}\left(T_{i} y_{n}^{(i-1)}, T_{i} x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+L_{i} d\left(y_{n}^{(i-1)}, x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+L_{i}\left[d\left(y_{n}^{(i-1)}, z_{n}^{i-1}\right)+d\left(z_{n}^{i-1}, x_{n}\right)\right] .
\end{aligned}
$$

Therefore, by 3.2 and 3.3 we have $\lim _{n} \operatorname{dist}\left(x_{n}, T_{i} x_{n}\right)=0$ for all $i=$ $1, \cdots, m$.

Corollary 3.3. Let $X, D,\left\{T_{i}\right\}$ and $\left\{x_{n}\right\}$ be as in Theorem 3.2. Suppose T_{i} is Δ-demiclosed at 0 for each $i \in\{1, \cdots, m\}$. Then $\left\{x_{n}\right\}$ is Δ-convergent to a common fixed point.

Proof. By Lemma 3.1. we have $\lim _{n} d\left(x_{n}, p\right)$ exists for all $p \in \mathcal{F}$. Hence $\left\{x_{n}\right\}$ is bounded. Now, let $u \in \bigcup A\left(\left\{w_{n}\right\}\right)$, where the union is taken over subsequences $\left\{w_{n}\right\}$ of $\left\{x_{n}\right\}$. Then there exists a subsequence $\left\{u_{n}\right\}$ of $\left\{x_{n}\right\}$ such that $A\left(\left\{u_{n}\right\}\right)=\{u\}$. By Lemma 2.5 there exists $\left\{v_{n}\right\}$, a subsequence of $\left\{u_{n}\right\}$ such that $\Delta-\lim _{n} v_{n}=v$ and by Lemma 2.3 we have that $v \in D$.

Using Theorem 3.2 and the fact that T_{i} is Δ-demiclosed at zero for each i, we have $v \in \mathcal{F}$ and hence $\left\{d\left(u_{n}, v\right)\right\}$ converges by Lemma 3.1. Moreover, Lemma 2.4 implies that $u=v \in \mathcal{F}$. Thus

$$
\bigcup A\left(\left\{w_{n}\right\}\right) \subseteq \mathcal{F} .
$$

To conclude, it suffices to show that the set $\bigcup A\left(\left\{w_{n}\right\}\right)$ is a singleton set. To see this, let $A\left(\left\{x_{n}\right\}\right)=\{x\}$ and let $\left\{u_{n}\right\}$ be an arbitrary subsequence of $\left\{x_{n}\right\}$ with $A\left(\left\{u_{n}\right\}\right)=\{u\}$. We have $u \in \mathcal{F}$ and by Lemma 3.1. $\left\{d\left(x_{n}, u\right)\right\}$ converges. Lemma 2.4 implies that $u=x$.

Corollary 3.4. Let $X, D,\left\{T_{i}, i=1, \cdots, m\right\}, \mathcal{F}$ and $\left\{x_{n}\right\}$ be as in Theorem 3.2. Suppose D is compact. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{i}, i=1, \cdots, m\right\}$.

Proof. It follows from Theorem 3.2 that $\lim _{n} \operatorname{dist}\left(x_{n}, T_{i} x_{n}\right)=0$ for all $i=$ $1, \cdots, m$. Since D is compact, there exists a subsequence $\left\{v_{n}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n} d\left(v_{n}, w\right)=0$ for some $w \in D$. Therefore, for $i \in\{1, \cdots, m\}$,

$$
d\left(w, y_{i}\right) \leq d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right)+d\left(u_{n}^{i}, y_{i}\right), \quad \forall u_{n}^{i} \in T_{i} v_{n} .
$$

This implies that
$\operatorname{dist}\left(w, T_{i} w\right) \leq d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right)+\operatorname{dist} d\left(u_{n}^{i}, T_{i} w\right) \quad \forall y_{i} \in T_{i} w, \quad \forall u_{n}^{i} \in T_{i} v_{n}$.
Using the fact that T_{i} is Lipschitzian, we obtain

$$
\begin{aligned}
\operatorname{dist}\left(w, T_{i} w\right) & \leq d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right)+\operatorname{dist}\left(u_{n}^{i}, T_{i} w\right) \\
& \leq d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right)+d_{H}\left(T_{i} v_{n}, T_{i} w\right) \\
& \leq d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right)+L_{i} d\left(v_{n}, w\right) \\
& \leq\left(1+L_{i}\right) d\left(w, v_{n}\right)+d\left(v_{n}, u_{n}^{i}\right),
\end{aligned}
$$

for all $u_{n}^{i} \in T_{i} v_{n}$ and i. This implies that

$$
\operatorname{dist}\left(w, T_{i} w\right) \leq\left(1+L_{i}\right) d\left(w, v_{n}\right)+\operatorname{dist}\left(v_{n}, T_{i} v_{n}\right) .
$$

Thus, $\operatorname{dist}\left(w, T_{i} w\right)=0$. Hence, $w \in \mathcal{F}$. By Lemma 3.1 we have that $\lim _{n} d\left(x_{n}, w\right)$ exists. Thus $\lim _{n} d\left(x_{n}, w\right)=\lim _{n} d\left(v_{n}, w\right)=0$.

Theorem 3.5. Let $X, D,\left\{T_{i}\right\}, \mathcal{F}$ and $\left\{x_{n}\right\}$ be as in Lemma 3.1. Suppose X is complete. Then $\left\{x_{n}\right\}$ converges strongly to a point $p \in \mathcal{F}$ if and only if $\lim _{n} \inf \operatorname{dist}\left(x_{n}, \mathcal{F}\right)=0$.

Proof. The forward direction is immediate. Suppose that $\liminf _{n} \operatorname{dist}\left(x_{n}, \mathcal{F}\right)=$ 0 . It is seen in the proof of Lemma 3.1 that $d\left(x_{n+1}, p\right) \leq d\left(x_{n}, p\right)$ for all $p \in \mathcal{F}$. This implies that $\operatorname{dist}\left(x_{n+1}, \mathcal{F}\right) \leq \operatorname{dist}\left(x_{n}, \mathcal{F}\right)$. So the $\lim _{n} \operatorname{dist}\left(x_{n}, \mathcal{F}\right)$ exists, and sing the hypothesis, $\lim _{n} \operatorname{dist}\left(x_{n+1}, \mathcal{F}\right)=0$. Therefore we can choose a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and a sequence $\left\{p_{k}\right\}$ in \mathcal{F} such that for all $k \in \mathbb{N}$, $d\left(x_{n_{k}}, p_{k}\right)<\frac{1}{2^{k}}$. By Lemma 3.1 we have $d\left(x_{n_{k+1}}, p_{k}\right) \leq d\left(x_{n_{k}}, p_{k}\right)<\frac{1}{2^{k}}$. Hence

$$
d\left(p_{k+1}, p_{k}\right) \leq d\left(x_{n_{k+1}}, p_{k+1}\right)+d\left(x_{n_{k+1}}, p_{k}\right)<\frac{1}{2^{k+1}}+\frac{1}{2^{k}}<\frac{1}{2^{k-1}} .
$$

Thus $\left\{p_{k}\right\}$ is a Cauchy sequence in D and therefore converges (strongly) to some point $q \in D$. It follows that $\lim _{k} d\left(x_{n_{k}}, q\right)=0$. Therefore, for $i \in$ $\{1, \cdots, m\}$,

$$
\operatorname{dist}\left(p_{k}, T_{i} q\right) \leq d_{H}\left(T_{i} p_{k}, T_{i} q\right) \leq L_{i} d\left(p_{k}, q\right) \rightarrow 0
$$

As $T q \in \mathcal{C B}(D), q \in \mathcal{F}$. Since $\lim _{n} d\left(x_{n}, q\right)$ exists, we conclude that

$$
\lim _{n} d\left(x_{n}, q\right)=0 .
$$

Next we present our convergence theorems for a countable family.
Let (X, d) be a Hadamard space and let D be a nonempty, closed and convex subset of X. Let $T_{i}: D \rightarrow \mathcal{C B}(D)$ be multi-valued demicontractive mappings with constants $\left\{k_{i}\right\} \subset(0,1), i \in N$. A sequence $\left\{x_{n}\right\}$ is defined iteratively as follows:

$$
\begin{cases}x_{1} \in D \tag{3.4}\\ y_{n}^{(0)}=x_{n} \\ y_{n}^{(i)}=a_{n i} y_{n}^{(i-1)} \oplus\left(1-a_{n i}\right) z_{n}^{(i-1)}, & i=1, \cdots, n-1 \\ x_{n+1}=a_{n n} y_{n}^{(n-1)} \oplus\left(1-a_{n n}\right) z_{n}^{(n-1)}, & n=1,2,3, \cdots\end{cases}
$$

where $z_{n}^{(i-1)} \in T_{i} y_{n}^{(i-1)}, a_{n i} \in\left[k_{i}, 1\right], n \in \mathbb{N}, i=1, \cdots, n$.
Lemma 3.6. Let (X, d) be a $C A T(0)$ space and let D be a nonempty, closed and convex subset of X. Let $T_{i}: D \rightarrow \mathcal{C B}(D)$ be multi-valued demicontractive mappings with constants $\left\{k_{i}\right\} \subset(0,1), i \in \mathbb{N}$ and let $\left\{x_{n}\right\}$ be defined by the iterative process in (3.4. Suppose $\mathcal{F}:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$ and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$. Then, $\lim _{n} d\left(x_{n}, p\right)$ exists for all $p \in \mathcal{F}$.
Proof. Let $p \in \mathcal{F}$. By lemma 2.2 (ii), the scheme (3.4) and the assumptions on T_{i} 's we have

$$
\begin{aligned}
d\left(x_{n+1}, p\right)^{2} \leq & a_{n n} d\left(y_{n}^{(n-1)}, p\right)^{2}+\left(1-a_{n n}\right) d\left(z_{n}^{(n-1)}, p\right)^{2} \\
& -a_{n n}\left(1-a_{n n}\right) d\left(y_{n}^{n-1}, z_{n}^{(n-1)}\right)^{2} \\
\leq & a_{n n} d\left(y_{n}^{(n-1)}, p\right)^{2}+\left(1-a_{n n}\right) d i s t\left(z_{n}^{(n-1)}, T_{n} p\right)^{2} \\
& -a_{n n}\left(1-a_{n n}\right) d\left(y_{n}^{(n-1)}, z_{n}^{(n-1)}\right)^{2} \\
\leq & a_{n n} d\left(y_{n}^{(n-1)}, p\right)^{2}+\left(1-a_{n n}\right) d_{H}\left(T_{n} y_{n}^{(n-1)}, T_{n} p\right)^{2} \\
& -a_{n n}\left(1-a_{n n}\right) d\left(y_{n}^{(n-1)}, z_{n}^{(n-1)}\right)^{2} \\
\leq & a_{n n} d\left(y_{n}^{(n-1)}, p\right)^{2}+\left(1-a_{n n}\right)\left[d\left(y_{n}^{(n-1)}, p\right)^{2}+k_{n} d\left(y_{n}^{(n-1)}, z_{n}^{(n-1)}\right)^{2}\right] \\
& -a_{n n}\left(1-a_{n n}\right) d\left(y_{n}^{(n-1)}, z_{n}^{(n-1)}\right)^{2} \\
\leq & d\left(y_{n}^{(n-1)}, p\right)^{2}-\left(1-a_{n n}\right)\left(a_{n n}-k_{n}\right) d\left(y_{n}^{(n-1)}, z_{n}^{(n-1)}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq d\left(y_{n}^{(n-3)}, p\right)^{2}-\sum_{i=n-2}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& \vdots \\
& \leq d\left(y_{n}^{(0)}, p\right)^{2}-\sum_{i=1}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& =d\left(x_{n}, p\right)^{2}-\sum_{i=1}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \\
& \leq d\left(x_{n}, p\right)^{2} .
\end{aligned}
$$

This implies that $\lim _{n} d\left(x_{n}, p\right)$ exists, as a monotonic nonincreasing sequence of real numbers that is bounded below by 0 .

Theorem 3.7. Let $X, D,\left\{T_{i}\right\}, \mathcal{F}$ and $\left\{x_{n}\right\}$ be as in Lemma 3.6. Suppose $\liminf _{n} a_{n i}>k_{i}$ for each $i \in \mathbb{N}$ and let T_{i} be Lipschitzian maps for all $i \in \mathbb{N}$. Then $\lim _{n}^{n} \operatorname{dist}\left(x_{n}, T_{i} x_{n}\right)=0$ for all $i \in \mathbb{N}$.

Proof. As in the proof of Lemma 3.6

$$
\sum_{i=1}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \leq d\left(x_{n}, p\right)^{2}-d\left(x_{n+1}, p\right)^{2}
$$

for all $n \in \mathbb{N}$. This implies that

$$
\sum_{i=1}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2} \leq d\left(x_{1}, p\right)
$$

for all $n \in \mathbb{N}$. And so

$$
\lim _{n} \sum_{i=1}^{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2}
$$

exists in \mathbb{R}. Thus

$$
\lim _{n}\left(1-a_{n i}\right)\left(a_{n i}-k_{i}\right) d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)^{2}=0
$$

for all $i \in \mathbb{N}$. Since $\lim _{n} \inf a_{n i}>k_{i}$ for each $i \in \mathbb{N}$, it follows that

$$
\begin{equation*}
\lim _{n} d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right)=0 \quad \text { for each } \quad i \in \mathbb{N} . \tag{3.5}
\end{equation*}
$$

Now, let $i \in \mathbb{N}$. Then

$$
\begin{aligned}
& d\left(x_{n}, z_{n}^{(i-1)}\right) \\
& =d\left(y_{n}^{(0)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, y_{n}^{(1)}\right)+d\left(y_{n}^{(1)}, y_{n}^{(2)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, y_{n}^{(2)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, z_{n}^{(1)}\right)+\cdots+d\left(y_{n}^{(i-2)}, y_{n}^{(i-1)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \quad \vdots \\
& \leq d\left(y_{n}^{(0)}, z_{n}^{(0)}\right)+d\left(y_{n}^{(1)}, z_{n}^{(1)}\right)+\cdots+d\left(y_{n}^{(i-2)}, z_{n}^{(i-2)}\right)+d\left(y_{n}^{(i-1)}, z_{n}^{(i-1)}\right) \\
& \leq \sum_{k=1}^{i} d\left(y_{n}^{(k-1)}, z_{n}^{(k-1)}\right) .
\end{aligned}
$$

This and (3.5) imply that

$$
\begin{equation*}
\lim _{n} d\left(x_{n}, z_{n}^{(i-1)}\right)=0 \quad \text { for each } \quad i \in \mathbb{N} . \tag{3.6}
\end{equation*}
$$

Thus, $d\left(x_{n}, w_{n}^{i}\right) \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+d\left(z_{n}^{(i-1)}, w_{n}^{i}\right)$ for all $w_{n}^{i} \in T_{i} x_{n}$. Therefore,

$$
\operatorname{dist}\left(x_{n}, T_{i} x_{n}\right) \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+\operatorname{dist}\left(z_{n}^{(i-1)}, T_{i} x_{n}\right) .
$$

Using the fact that T_{i} is $L_{i}-$ Lipschitzian for each $i \in \mathbb{N}$, we have the following

$$
\begin{aligned}
\operatorname{dist}\left(x_{n}, T_{i} x_{n}\right) & \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+\operatorname{dist}\left(z_{n}^{(i-1)}, T_{i} x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+d_{H}\left(T_{i} y_{n}^{(i-1)}, T_{i} x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+L_{i} d\left(y_{n}^{(i-1)}, x_{n}\right) \\
& \leq d\left(x_{n}, z_{n}^{(i-1)}\right)+L_{i}\left[d\left(y_{n}^{(i-1)}, z_{n}^{i-1}\right)+d\left(z_{n}^{i-1}, x_{n}\right)\right] \\
& \leq\left(1+L_{i}\right) d\left(x_{n}, z_{n}^{(i-1)}\right)+L_{i} d\left(y_{n}^{(i-1)}, z_{n}^{i-1}\right) .
\end{aligned}
$$

Therefore, by (3.6 and (3.5 we have $\lim _{n} \operatorname{dist}\left(x_{n}, T_{i} x_{n}\right)=0$ for all $i \in \mathbb{N}$.
Corollary 3.8. Let $X, D,\left\{T_{i}\right\}$ and $\left\{x_{n}\right\}$ be as in Theorem 3.7. Suppose T_{i} is Δ-demiclosed at zero for each $i \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is Δ-convergent to a common fixed point of $\left\{T_{i}\right\}$.

Proof. Using Lemma 3.6 in place of Lemma 3.1 and Theorem 3.7 in place of Theorem 3.2, the proof follows similar arguments as in the proof of Corollary 3.3 .

Corollary 3.9. Let $X, D,\left\{T_{i}\right\}$ and $\left\{x_{n}\right\}$ be as in Theorem 3.7. Suppose D is compact. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{i}\right\}$.

Proof. Using Lemma 3.6 in place of Lemma 3.1 and Theorem 3.7 in place of Theorem 3.2, the proof follows similar arguments as in the proof of Corollary 3.4.

Theorem 3.10. Let $X, D,\left\{T_{i}\right\}, \mathcal{F}$ and $\left\{x_{n}\right\}$ be as in Lemma 3.6. Then $\left\{x_{n}\right\}$ converges strongly to a point $p \in \mathcal{F}$ if and only if $\lim _{n} \inf \operatorname{dist}\left(x_{n}, \mathcal{F}\right)=0$.
Proof. Using Lemma 3.6 in place of Lemma 3.1, the proof follows similar arguments as in the proof of Theorem 3.5.

4. Conclusion

In this work we have been able to develop algorithms for fixed points of finite and countable families of demicontractive multi-valued maps. Our theorems concern more general maps than quasi-nonexpansive maps whose finite families were considered by Akbar and Eslamian [1] in the setting of $C A T(0)$ spaces. In addition, our work complements the work of Chidume et al. in [6].

References

[1] A. Abkar and M. Eslamian, Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in $C A T(0)$ spaces, Nonlinear Anal., 75 (2012), 18951903.
[2] M. Asadi, Sh. Ghasemzadehdibagi, S. Haghayeghi and N. Ahmad, Fixed point theorems for (α, p)-nonexpansive mappings in $C A T(0)$ spaces, Nonlinear Funct. Anal. Appl., 26(5) (2021), 1045-1057.
[3] M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.
[4] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967), 197-229.
[5] P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320 (2006), 983-987.
[6] C.E. Chidume, A.U. Bello and P. Ndambomve, Strong and Δ-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces, Abstr. Appl. Anal., 2014, 2014:6.
[7] C.E. Chidume, C.O. Chidume, N. Djitté and M.S. Minjibir, Convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces, Abstr. Appl. Anal., 2013, Article ID 629468, 10 pages, 2013.
[8] C.E. Chidume and J.N. Ezeora, Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-conttractive mappings, Fixed Point Theory and Appl., 2014, article 111, 2014.
[9] S. Dhompongsa, A. Kaewkhao and B. Panyanak, On Kirk's strong convergence theorem for multivalued nonexpansive mappings on CAT (0) spaces, Nonlinear Anal., 75 (2012), 459-468.
[10] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572-2579.
[11] S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal., 65 (2006), 762-772.
[12] S. Dhompongsa, W. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35-45.
[13] G.Z. Eskandani and M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algor., 80 (2019), 1155-1179.
[14] G.Z. Eskandani, S. Azarmi and M. Raeisi, Products of resolvents and multivalued hybrid mappings in CAT(0) spaces, Acta Math. Sci., 38 (2018), 791-804.
[15] T.L. Hicks and J.D. Kubicek, On the Mann Iteration Process in a Hilbert Space, J. Math. Anal. Appl., 59 (1977), 498-504.
[16] S.H. Khan and M. Abbas, Strong and Δ-convergence of some iterative schemes in $C A T(0)$ spaces, Comput. Math. Appl., 61 (2011), 109-116.
[17] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
[18] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.
[19] W.A. Kirk, Geodesic geometry and fixed point theory II, in: International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, 2004, pp. 113-142.
[20] W.A. Kirk, Krasnoselskii's iteration process in hyperbolic space, 4(4) (1981-1982), 371381.
[21] U. Kohlenbach and L. Leustean, Mann iterates of directionally nonexpansive mappings in hyperbolic spaces, Abst. Appl. Anal., 2003:8 (2003), 449-477.
[22] K. Lerkchaiyaphum and W. Phuengrattana, Iterative approaches to solving convex minimization problems and fixed point problems in complete CAT(0) spaces, Numer. Algor., 77 (2018), 727-740.
[23] T.-C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182.
[24] G.A. Okeke, M. Abbas and M. de la Sen, Fixed point theorems for convex minimization problems in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(4) (2020), 671-696.
[25] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic space, Nonlinear Anal., 15 (1990), 537-558.
[26] S. Saejung, Halpern's Iteration in CAT(0) Spaces, Fixed Point Theory Appl., 2010, 471781 (2009).
[27] J. Tang, J. Zhu, S.S. Chang, M. Liu and X. Li, A new modified proximal point algorithm for a finite family of minimization problem and fixed point for a finite family of demicontractive mappings in Hadamard spaces, Nonlinear Funct. Anal. Appl., 25(3) (2020), 563-577.

[^0]: ${ }^{0}$ Received February 14, 2021. Revised August 27, 2021. Accepted December 9, 2021.
 ${ }^{0} 2020$ Mathematics Subject Classification: 47H09, 47H10, 47J25.
 ${ }^{0}$ Keywords: $C A T(0)$ space, multi-valued demicontractive maps, Hausdorff metric, strong convergence, Δ-convergence.
 ${ }^{0}$ Corresponding author: M. S. Minjibir(msminjibir.mth@buk.edu.ng).

