DOI QR코드

DOI QR Code

Buckling influence of intermediate filaments with and without surface effects

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Hussain, Muzamal (Department of Mathematics, University of Malakand at Chakdara) ;
  • Mahmood, Shaid (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Ahmad, Imtiaz (Department of Mathematics, MirpureUniversity of Science and Technology (MUST))
  • Received : 2020.10.17
  • Accepted : 2022.01.18
  • Published : 2022.04.25

Abstract

Intermediate filaments are the mechanical ropes for both cytoskeleton and nucleoskeleton of the cell which provide tensile force to these skeletons. In providing the mechanical support to the cell, they are likely to buckle. We used conventional Euler buckling model to find the critical buckling force under different boundary conditions which they assume during different functions. However, there are many experimental and theoretical studies about other cytoskeleton components which demonstrate that due to mechanical coupling with the surrounding surface, the critical buckling force increases considerably. Motivated with these results, we also investigated the influence of surface effects on the critical buckling force of intermediate filaments. The surface effects become profound because of increasing ratio of surface area of intermediate filaments to bulk at nano-scale. The model has been solved analytically to obtain relations for the critical forces for the buckling of intermediate filaments without and with surface effects. We found that critical buckling force with surface effects increases to a large extent due to mechanical coupling of intermediate filaments with the surrounding surface. Our study may be useful to develop a unified experimental protocol to characterize the physical properties of Intermediate filaments and may be helpful in understanding many biological phenomenon involving intermediate filaments.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P. 2/155/43.

References

  1. Ackbarow, T., Chen, X., Keten, S., and Buehler, M.J. (2007), "Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains", Proceedings of the National Academy of Sciences 104, 16410-16415. https://doi.org/10.1073/pnas.0705759104.
  2. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  3. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  4. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  9. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.
  10. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277
  11. Alberts, B., Johnson, A. and Walter, P. (2002), "Molecular biology of the cell", Annals Botany, 91(3), 401. https://doi.org/10.1093/aob/mcg023.
  12. Ampiaw, R.E., Yaqub, M. and Lee, W. (2019), "Adsorption of microcystin onto activated carbon: A review", Membr. Water Treat., 10(6), 405-415. https://doi.org/10.12989/mwt.2019.10.6.405
  13. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  14. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with "Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  15. Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochim. Biophys. Acta, 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.
  16. Bornheim, R., Muller, M., Reuter, U., Herrmann, H., Bussow, H. and Magin, T.M. (2008), "A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system and causes posterior cataracts in transgenic mice", J. Cell Sci., 121, 3737-3746. https://doi.org/10.1242/jcs.030312.
  17. Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E. and Weitz, D.A. (2006), "Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement", J. Cell Biol., 173, 733-741. https://doi.org/10.1083/jcb.200601060.
  18. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nature Rev. Mol. Cell Biol., 5, 601. https://doi.org/10.1038/nrm1438.
  19. Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100, 074308. https://doi.org/10.1063/1.2356094.
  20. Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
  21. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mech., 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
  22. Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biol. Macromol., 5, 267-274. https://doi.org/10.1016/0141-8130(83)90040-5.
  23. Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69, 165410. https://doi.org/10.1103/PhysRevB.69.165410.
  24. El Said, N. and Kassem, A. T. (2018), "Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites", Membr. Water Treat., 9(5), 327-334. https://doi.org/10.12989/mwt.2018.9.5.327.
  25. Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nature, 463, 485. https://doi.org/10.1038/nature08908.
  26. Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proceedings of the National Academy of Sciences, 75, 5034-5038. https://doi.org/10.1073/pnas.75.10.5034.
  27. Geronimo, F.K.F., Maniquiz-Redillas, M.C., Hong, J. and Kim, L.H. (2019), "Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems", Membr. Water Treat., 10(1), 91-97. https://doi.org/10.12989/mwt.2019.10.1.091.
  28. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120, 923-934. https://doi.org/10.1083/jcb.120.4.923.
  29. Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biol., 177, 14-23. https://doi.org/10.1016/j.jsb.2011.11.017.
  30. Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biol. Macromol., 14, 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2.
  31. Gruenbaum, Y. and Foisner, R. (2015), "Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation", Ann. Rev. Biochem., 84, 131-164. https://doi.org/10.1146/annurev-biochem-060614-034115.
  32. Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nature Rev. Mol. Cell Biol., 6, 21. https://doi.org/10.1038/nrm1550.
  33. Gurtin, M., Weissmuller, J. and Larche, F. (1998)", A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78, 1093-1109. https://doi.org/10.1080/01418619808239977.
  34. Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Mol. Biol., 360, 623-630. https://doi.org/10.1016/j.jmb.2006.05.030.
  35. Gyoeva, F. and Gelfand, V. (1992), "Coalignment of vimentin intermediate filaments with microtubules depends on kinesin", Trends Cell Biol., 2, 9. https://doi.org/10.1038/353445a0.
  36. Hanukoglu, I. and Fuchs, E. (1982), "The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins", Cell, 31, 243-252. https://doi.org/10.1016/0092-8674(82)90424-X.
  37. Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33, 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
  38. He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802. https://doi.org/10.1016/j.ijmecsci.2016.05.006.
  39. Herrmann, H. and Aebi, U. (2004), "Intermediate filaments: molecular structure, assembly mechanism and integration into functionally distinct intracellular scaffolds", Ann. Rev. Biochem., 73, 749-789. https://doi.org/10.1146/annurev.biochem.73.011303.073823.
  40. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nature Rev. Mol. Cell Biol., 8, 562. https://doi.org/10.1038/nrm2197.
  41. Hussain, M., Naeem., M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  42. Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  43. Hussain, M. and Naeem, M. (2019b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  44. Hussain M. and Naeem M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs: A theoretical study", J. Sandw. Struct. Mater., 23(6), 2245-2273. https://doi.org/10.1177/1099636220906257.
  45. Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38, 538-555. https://doi.org/10.1083/jcb.38.3.538.
  46. Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
  47. Karabinos, A., Riemer, D., Erber, A. and Weber, K. (1998), "Homologues of vertebrate type I, II and III intermediate filament (IF) proteins in an invertebrate: The IF multigene family of the cephalochordate Branchiostoma", FEBS Lett., 437, 15-18. https://doi.org/10.1016/S0014-5793(98)01190-9.
  48. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/https://doi.org/10.12989/sss.2017.20.5.595.
  49. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  50. Kolahchi, R. and Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  51. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dynam., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  52. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  53. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  54. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  55. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017b), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall.Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  56. Kolahchi, R., Hosseini, H., Fakhar, M. H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  57. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.
  58. Kreplak, L., Bar, H., Leterrier, J., Herrmann, H. and Aebi, U. (2005), "Exploring the mechanical behavior of single intermediate filaments", J. Mol. Biol., 354, 569-577. https://doi.org/10.1016/j.jmb.2005.09.092.
  59. Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nature Sruct. Mol. Biol., 19, 707. https://doi.org/10.1038/nsmb.2330.
  60. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  61. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  62. Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of the 5th National Conference on Processing and Characterization of Materials, Rourkela, India, December.
  63. Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceeding of the 7th National Conference on Processing and Characterization of Materials (NCPCM 2017), National Institute of Technology Rourkela, India, December.
  64. Mehar, K. and Kumar Panda, S. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method" Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  65. Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  66. Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237
  67. Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  68. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  69. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  70. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  71. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1177/1077546319842426.
  72. Mehar, K., Panda, S.K. and Mahapatra, T. R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.12989/was.2019.28.1.019.
  73. Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  74. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  75. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525.
  76. Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  77. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  78. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  79. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139. https://doi.org/10.108/0957-4484/11/3/301.
  80. Min, K.J., Lee, J., Cha, H.Y. and Park, K.Y. (2019), "Nutrient removal from secondary effluent using filamentous algae in raceway ponds", Membr. Water Treat., 10(3), 191-199. https://doi.org/10.12989/mwt.2019.10.3.191.
  81. Mohsen, M. and Eyvazian A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  82. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.1016/j.cam.2019.112625.
  83. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  84. Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481.
  85. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  86. Nouri, A.Z. and Heydari, M.M. (2017), "Performance and flow field assessment of settling tanks using experimental and CFD modeling", Membr. Water Treat., 8(5), 423-435. https://doi.org/10.12989/mwt.2017.8.5.423.
  87. Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008.
  88. Panda, S.K. and Singh, B.N. (2013a), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM#", Mech. Based Des. Struct., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
  89. Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097.
  90. Potschka, M., Nave, R., Weber, K. and GEISLER, N. (1990), "The two coiled coils in the isolated rod domain of the intermediate filament protein desmin are staggered: A hydrodynamic analysis of tetramers and dimers", Eur. J. Biochem., 190, 503-508. https://doi.org/10.1111/j.1432-1033.1990.tb15602.x.
  91. Qadir, D., Mukhtar, H. and Keong, L.K. (2017), "Retention of sulfate and chloride ions in commercially available tubular membranes", Membr. Water Treat., 8(4), 369-380. https://doi.org/10.12989/mwt.2017.8.4.369.
  92. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS One, 4, e7294. https://doi.org/10.1371/journal.pone.0007294.
  93. Qin, Z., Gautieri, A., Nair, A.K., Inbar, H. and Buehler, M.J. (2012), "Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface", Langmuir, 28, 1982-1992. https://doi.org/10.1021/la204052a.
  94. Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proceedings of the National Academy of Sciences, 111(31), 11359-11364. https://doi.org/10.1073/pnas.1403122111.
  95. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9, 045108. https://doi.org/10.1063/1.5086216.
  96. Siddiqui, F.A. and Field, R.W. (2016), "Fouling and cleaning of a tubular ultrafiltration ceramic membrane", Membr. Water Treat., 7(5), 433-449. http://doi.org/10.12989/mwt.2016.7.5.433.
  97. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments and microtubules a quadruple fluorescence labeling study", Biochem. Cell Biol., 70, 1174-1186. https://doi.org/10.1139/o92-163.
  98. Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessays, 25, 243-251. https://doi.org/10.1002/bies.10246
  99. Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32, 293-300. https://doi.org/10.1007/s10483-011-1415-x .
  100. Wagner, O.I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F. and Janmey, P.A. (2007), "Softness, strength and self-repair in intermediate filament networks", Exp. Cell Res., 313, 2228-2235. https://doi.org/10.1016/j.yexcr.2007.04.025.
  101. Wang, G.F. and Feng, X.Q. (2009)", Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505.
  102. Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in type I-Iv intermediate filament subunit proteins", Biochemistry, 40, 10342-10349. https://doi.org/10.1007/s12035-008-8033-0.
  103. Yoon, M., Moir, R.D., Prahlad, V. and Goldman, R.D. (1998), "Motile properties of vimentin intermediate filament networks in living cells", J. Cell Biol., 143, 147-157. https://doi.org/10.1083/jcb.143.1.147.
  104. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  105. Zamaniasl, M. (2019), "Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency", Membr. Water Treat., 10(5), 387-394. https://doi.org/10.12989/mwt.2019.10.5.387.