DOI QR코드

DOI QR Code

Structural health monitoring for pinching structures via hysteretic mechanics models

  • Rabiepour, Mohammad (Department of Mechanical Engineering, University of Canterbury) ;
  • Zhou, Cong (Department of Civil Aviation, Northwestern Polytechnical University) ;
  • Chase, James G. (Department of Mechanical Engineering, University of Canterbury) ;
  • Rodgers, Geoffrey W. (Department of Mechanical Engineering, University of Canterbury) ;
  • Xu, Chao (School of Astronautics, Northwestern Polytechnical University)
  • Received : 2021.04.30
  • Accepted : 2022.01.23
  • Published : 2022.04.25

Abstract

Many Structural Health Monitoring (SHM) methods have been proposed for structural damage diagnosis and prognosis. However, SHM for pinched hysteretic structures can be problematic due to the high level of nonlinearity. The model-free hysteresis loop analysis (HLA) has displayed notable robustness and accuracy in identifying damage for full-scaled and scaled test buildings. In this paper, the performance of HLA is compared with seven other SHM methods in identifying lateral elastic stiffness for a six-story numerical building with highly nonlinear pinching behavior. Two successive earthquakes are employed to compare the accuracy and consistency of methods within and between events. Robustness is assessed across sampling rates 50-1000 Hz in noise-free condition and then assessed with 10% root mean square (RMS) noise added to responses at 250 Hz sampling rate. Results confirm HLA is the most robust method to sampling rate and noise. HLA preserves high accuracy even when the sampling rate drops to 50 Hz, where the performance of other methods deteriorates considerably. In noisy conditions, the maximum absolute estimation error is less than 4% for HLA. The overall results show HLA has high robustness and accuracy for an extremely nonlinear, but realistic case compared to a range of leading and recent model-based and model-free methods.

Keywords

Acknowledgement

This research did not receive any specific grant from funding agencies in the commercial, public, or not-for-profit sectors.

References

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043.
  2. Akhlaghi, M.M., Bose, S., Mohammadi, M.E., Moaveni, B., Stavridis, A. and Wood, R.L. (2021), "Post-earthquake damage identification of an RC school building in Nepal using ambient vibration and point cloud data", Eng. Struct., 227, 111413. https://doi.org/10.1016/j.engstruct.2020.111413.
  3. Amini, F. and Rabiepour, M. (2017), "A novel online damage detection approach in bilinear chain-like structures", J Civil Struct Hlth., 7(2), 245-261. https://doi.org/10.1007/s13349-017-0216-9.
  4. Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., ASCE, 111(8), 1010-1026. https://doi.org/10.1061/(Asce)0733-9399(1985)111:8(1010).
  5. Baber, T.T. and Noori, M.N. (1986), "Modeling General Hysteresis Behavior and Random Vibration Application", J Vib Acoust, 108(4), 411-420. https://doi.org/10.1115/1.3269364.
  6. Baber, T.T. and Wen, Y.K. (1980), "Stochastic equivalent linearization for hysteretic, degrading, multistory strutctures", College of Engineering. University of Illinois at Urbana-Champaign, USA.
  7. Bradley, B.A. and Cubrinovski, M. (2011), "Near-source strong ground motions observed in the 22 February 2011 Christchurch Earthquake", Seismol. Res. Lett., 82(6), 853-865. https://doi.org/10.1785/gssrl.82.6.853.
  8. Bradley, B.A., Quigley, M.C., Van Dissen, R.J. and Litchfield, N.J. (2014), "Ground motion and seismic source aspects of the Canterbury earthquake sequence", Earthq. Spectra, 30(1), 1-15. https://doi.org/10.1193/030113eqs060m.
  9. Caprili, S., Mattei, F. and Salvatore, W. (2022), "Simplified mechanical models for critical regions in RC frame systems", Eng. Struct., 252, 113677. https://doi.org/10.1016/j.engstruct.2021.113677.
  10. Chase, J.G., Hwang, K.L., Barroso, L.R. and Mander, J.B. (2005), "A simple LMS-based approach to the structural health monitoring benchmark problem", Earthq. Eng. Struct. Dyn., 34(6), 575-594. https://doi.org/10.1002/eqe.433.
  11. Cifuentes, A.O. and Iwan, W.D. (1989), "Nonlinear system identification based on modelling of restoring force behaviour", Soil Dyn. Earthq. Eng., 8(1), 2-8. https://doi.org/10.1016/S0267-7261(89)80002-8.
  12. Clifton, C., Bruneau, M., MacRae, G., Leon, R. and Fussell, A. (2011), "Steel structures damage from the Christchurch earthquake series of 2010 and 2011", Bul. NZ Soc. Earthq. Eng., 44(4), 297-318. https://doi.org/10.5459/bnzsee.44.4.297-318.
  13. Constantinou, M.C. and Kneifati, M.C. (1988), "Dynamics of soil-base-isolated-structure systems", J. Struct. Eng., 114(1), 211-221. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:1(211).
  14. Docherty, P.D., Chase, J.G. and David, T. (2012), "Characterisation of the iterative integral parameter identification method", Med. Biol. Eng. Comput., 50(2), 127-134. https://doi.org/10.1007/s11517-011-0851-y.
  15. Docherty, P.D., Chase, J.G., Lotz, T.F. and Desaive, T. (2011), "A graphical method for practical and informative identifiability analyses of physiological models: A case study of insulin kinetics and sensitivity", Biomed. Eng. Online, 10(1), 1-20. https://doi.org/10.1186/1475-925x-10-39.
  16. Erdik, T. and Pektas, A.O. (2017), "Rock slope damage level prediction by using multivariate adaptive regression splines (MARS)", Neur.l Comput. Appl., 1-10. https://doi.org/10.1007/s00521-017-3186-2.
  17. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Hlth. Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419.
  18. FEMA, P. (2009), Effects of Strength and Stiffness Degradation on Seismic Response, FEMA P440A.
  19. Foliente, G.C. (1995), "Hysteresis modeling of wood joints and structural systems", J. Struct. Eng., 121(6), 1013-1022. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013).
  20. Friedman, J. (1993), "Fast MARS. Dept. of Statistics", Department of statistics and Stanford Linear Accelerator Center, Stanford University, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, California, USA.
  21. Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statist., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963.
  22. Fu, B., Jiang, H. and Chen, J. (2021), "Substructure shake table testing of frame structure-damper system using model-based integration algorithms and finite element method: numerical study", Symmetry, 13(9), 1739. https://doi.org/10.3390/sym13091739.
  23. Gharehbaghi, V.R., Noroozinejad Farsangi, E., Noori, M., Yang, T., Li, S., Nguyen, A., Malaga-Chuquitaype, C., Gardoni, P. and Mirjalili, S. (2021), "A critical review on structural health monitoring: Definitions, methods, and perspectives", Arch. Comput. Meth. Eng., 1-27. https://doi.org/10.1007/s11831-021-09665-9.
  24. Ghiasi, R., Ghasemi, M.R. and Noori, M. (2018), "Comparative studies of metamodeling and AI-Based techniques in damage detection of structures", Adv. Eng. Softw., 125, 101-112. https://doi.org/10.1016/j.advengsoft.2018.02.006.
  25. Ghiasi, R., Torkzadeh, P. and Noori, M. (2016), "A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Hlth. Monit., 15(3), 302-316. https://doi.org/10.1177/1475921716639587.
  26. Hann, C.E., Singh-Levett, I., Deam, B.L., Mander, J.B. and Chase, J.G. (2009), "Real-time system identification of a nonlinear four-story steel frame structure-Application to structural health monitoring", IEEE Sensor. J., 9(11), 1339-1346. https://doi.org/10.1109/JSEN.2009.2022434.
  27. Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, USA.
  28. Huang, Q., Gardoni, P. and Hurlebaus, S. (2012), "A probabilistic damage detection approach using vibration-based nondestructive testing", Struct. Saf., 38, 11-21. https://doi.org/10.1016/j.strusafe.2012.01.004.
  29. Huang, X.H., Dyke, S., Sun, Z. and Xu, Z.D. (2017), "Simultaneous identification of stiffness, mass, and damping using an on-line model updating approach", Struct. Control Hlth. Monit., 24(4), e1892. https://doi.org/10.1002/stc.1892.
  30. Jin, S.S., Cho, S. and Jung, H.J. (2015), "Adaptive reference updating for vibration-based structural health monitoring under varying environmental conditions", Comput. Struct., 158, 211-224. https://doi.org/10.1016/j.compstruc.2015.06.001.
  31. Johnson, L.A. and Olshansky, R.B. (2016), After Great Disasters: How Six Countries Managed Community Recovery, Lincoln Institute of Land Policy, Cambridge, Massachusetts, United States.
  32. Keogh, E., Chu, S., Hart, D. and Pazzani M. (2001), "An online algorithm for segmenting time series", Procddings of the 2001 IEEE International Conference on Data Mining, 289-296.
  33. Lakshmi, K. and Keerthivas, M. (2021), "Damage diagnosis of high-rise buildings under variable ambient conditions using subdomain approach", Invers. Prob. Sci. Eng., 29(13), 2579-2610. https://doi.org/10.1080/17415977.2021.1941922.
  34. Ljung, L. (1999), System Identification: Theory for the User, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.
  35. Loh, C.H., Mao, C.H., Huang, J.R. and Pan, T.C. (2011), "System identification and damage evaluation of degrading hysteresis of reinforced concrete frames", Earthq. Eng. Struct. Dyn., 40(6), 623-640. https://doi.org/10.1002/eqe.1051.
  36. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech., 71(3), 342-349. https://doi.org/10.1115/1.1668082.
  37. Marano, G., Pelliciari, M., Cuoghi, T., Briseghella, B., Lavorato, D. and Tarantino, A. (2017), "Degrading Bouc-Wen model parameters identification under cyclic load", Int. J. Geotech. Earthq. Eng. (IJGEE), 8(2), 60-81. https://doi.org/10.4018/ijgee.2017070104
  38. Milborrow, S. (2011), Earth: Multivariate Adaptive Regression Splines, Derived from mda:mars by T. Hastie and R. Tibshirani., http://CRAN.R-project.org/package=earth.
  39. Moghaddasi, M., Cubrinovski, M., Chase, J.G., Pampanin, S. and Carr, A. (2011), "Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlo simulation", Eng. Struct., 33(4), 1338-1347. https://doi.org/10.1016/j.engstruct.2011.01.011.
  40. Mukhopadhyay, T. (2018), "A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise", J. Sandwi. Struct. Mater., 20(7), 885-903. https://doi.org/10.1177/1099636216682533.
  41. Nayyerloo, M., Chase, J., MacRae, G. and Chen, X. (2011), "LMS-based approach to structural health monitoring of nonlinear hysteretic structures", Struct. Hlth. Monit., 10(4), 429-444. https://doi.org/10.1177/1475921710379519.
  42. Nayyerloo, M., Chase, J.G., Zhou, C. and Rabiepour, M. (2021), "Real-time structural health monitoring of nonlinear hysteretic structures using a fast and slow dynamics separation method", IFAC J. Syst. Control, 15, 100122. https://doi.org/10.1016/j.ifacsc.2020.100122.
  43. Ou, G., Dyke, S.J. and Prakash, A. (2017), "Real time hybrid simulation with online model updating: An analysis of accuracy", Mech. Syst. Signal Pr., 84, 223-240. https://doi.org/10.1016/j.ymssp.2016.06.015.
  44. Pan, Y., Ventura, C.E., Bebamzadeh, A. and Motamedi, M. (2021), "Modeling of a shake-table tested retrofitted wood-frame building subjected to subduction ground motions", Earthq. Eng. Struct. Dyn., 50(9), 2510-2528. https://doi.org/10.1002/eqe.3457.
  45. Pelliciari, M., Briseghella, B., Tondolo, F., Veneziano, L., Nuti, C., Greco, R., Lavorato, D. and Tarantino, A.M. (2020), "A degrading Bouc-Wen model for the hysteresis of reinforced concrete structural elements", Struct. Infrastr. Eng., 16(7), 917-930. https://doi.org/10.1080/15732479.2019.1674893.
  46. Pelliciari, M., Marano, G.C., Cuoghi, T., Briseghella, B., Lavorato, D. and Tarantino, A.M. (2018), "Parameter identification of degrading and pinched hysteretic systems using a modified Bouc-Wen model", Struct. Infrastr. Eng., 14(12), 1573-1585. https://doi.org/10.1080/15732479.2018.1469652.
  47. Psimoulis, P.A. and Stiros S.C. (2008), "Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures", Comput. Aid. Civil Infrastr. Eng., 23(5), 389-403. https://doi.org/10.1111/j.1467-8667.2008.00547.x.
  48. Rabiepour, M., Zhou, C. and Chase, J.G. (2021), "Evaluation of pinching effects on a real concrete building seismic performance by resimulating displacement responses using HLA SHM results", J. Perform. Constr. Facil., 35(4), 04021024. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001602.
  49. Reinhorn, A.M., Madan, A., Valles, R., Reichmann, Y. and Mander, J.B. (1995), "Modeling of masonry infill panels for structural analysis", National Center for Earthquake Engineering Research, Technical Report NCEER-95-0018.
  50. Roohi, M., Erazo, K., Rosowsky, D. and Hernandez, E.M. (2021), "An extended model-based observer for state estimation in nonlinear hysteretic structural systems", Mech. Syst. Signal Pr., 146, 107015. https://doi.org/10.1016/j.ymssp.2020.107015.
  51. Roohi, M., Hernandez, E.M. and Rosowsky, D. (2019), "Nonlinear seismic response reconstruction and performance assessment of instrumented wood-frame buildings-Validation using NEESWood Capstone full-scale tests", Struct. Control Hlth. Monit., 26(9), e2373. https://doi.org/10.1002/stc.2373.
  52. Ruffels, A., Gonzalez, I. and Karoumi, R. (2020), "Model-free damage detection of a laboratory bridge using artificial neural networks", J. Civil Struct. Hlth., 10(2), 183-195. https://doi.org/10.1007/s13349-019-00375-2.
  53. Salvador, S. and Chan, P. (2004), "Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms", 16th IEEE International Conference on Tools with Artificial Intelligence, November. https://doi.org/10.1109/ICTAI.2004.50.
  54. Sengupta, P. and Li, B. (2013), "Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement", Eng. Struct., 46, 392-406. https://doi.org/10.1016/j.engstruct.2012.08.003.
  55. Sengupta, P. and Li, B. (2014), "Hysteresis behavior of reinforced concrete walls", J. Struct. Eng., 140(7), 04014030. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000927.
  56. Sireteanu, T., Giuclea, M. and Mitu, A. (2010), "Identification of an extended Bouc-Wen model with application to seismic protection through hysteretic devices", Comput. Mech., 45(5), 431-441. https://doi.org/10.1007/s00466-009-0451-y.
  57. Sirotti, S., Pelliciari, M., Di Trapani, F., Briseghella, B., Carlo Marano, G., Nuti, C. and Tarantino A.M. (2021), "Development and validation of new bouc-wen data-driven hysteresis model for masonry infilled rc frames", J. Eng. Mech., 147(11), 04021092. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002001.
  58. Song, W. and Dyke, S. (2013), "Real-time dynamic model updating of a hysteretic structural system", J. Struct. Eng., 140(3), 04013082. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000857.
  59. Stephens, J.E. and Yao, J.T. (1987), "Damage assessment using response measurements", J. Struct. Eng., 113(4), 787-801. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(787).
  60. Sues, R., Mau, S. and Wen, Y.K. (1988), "Systems identification of degrading hysteretic restoring forces", J. Eng. Mech., 114(5), 833-846. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:5(833).
  61. Toussi, S. and Yao, J.T. (1983), "Hysteresis identification of existing structures", J. Eng. Mech., 109(5), 1189-1202. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1189).
  62. Wen, Y. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Div., 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106.
  63. Xu, C., Chase, J.G. and Rodgers G.W. (2015), "Nonlinear regression based health monitoring of hysteretic structures under seismic excitation", Shock Vib., 2015. https://doi.org/10.1155/2015/193136.
  64. Xu, C., Chase, J.G., Rodgers, G.W. and Zhou, C. (2014), "Multi-phase linear regression: A novel method for the identification of base-isolated buildings using seismic response data", Eurodyn 2014: Ix International Conference on Structural Dynamics, 2599-2604.
  65. Xu, Z.D., Liu, M., Wu, Z. and Zeng, X. (2011), "Energy damage detection strategy based on strain responses for long-span bridge structures", J. Bridge Eng., 16(5), 644-652. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000195.
  66. Xu, Z.D. and Wu, K.Y. (2012), "Damage detection for space truss structures based on strain mode under ambient excitation", J. Eng. Mech., 138(10), 1215-1223. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000426.
  67. Xu, Z.D. and Wu, Z. (2007), "Energy damage detection strategy based on acceleration responses for long-span bridge structures", Eng. Struct., 29(4), 609-617. https://doi.org/10.1016/j.engstruct.2006.06.004.
  68. Ying, Z., Wang, Y., Ni, Y. and Xu, C. (2021), "Model-free identification of multiple periodic excitations and detection of structural anomaly using noisy response measurements", Smart Struct. Syst., 28(3), 407-423. https://doi.org/10.12989/sss.2021.28.3.407.
  69. Yu, B., Ning, C.l. and Li, B. (2016), "Hysteretic model for shearcritical reinforced concrete columns", J. Struct. Eng., 142(9), 04016056. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001519.
  70. Zhao, Y., Xu, B., Deng, B. and He, J. (2021), "Data-driven nonparametric structural nonlinearity identification under unknown excitation with limited data fusion", International Workshop on Civil Structural Health Monitoring, March.
  71. Zhou, C., Chase, J.G. and Rodgers, G. (2017a), "Efficient hysteresis loop analysis-based damage identification of a reinforced concrete frame structure over multiple events", J. Civil Struct. Hlth., 7(4), 541-556. https://doi.org/10.1007/s13349-017-0241-8.
  72. Zhou, C., Chase, J.G. and Rodgers, G.W. (2019), "Degradation evaluation of lateral story stiffness using HLA-based deep learning networks", Adv. Eng. Inform., 39, 259-268. https://doi.org/10.1016/j.aei.2019.01.007.
  73. Zhou, C., Chase, J.G. and Rodgers, G.W. (2021), "Support vector machines for automated modelling of nonlinear structures using health monitoring results", Mech. Syst. Signal Pr., 149, 107201. https://doi.org/10.1016/j.ymssp.2020.107201.
  74. Zhou, C., Chase, J.G., Rodgers, G.W., Huang, B.F. and Xu, C. (2017b), "Effective stiffness identification for structural health monitoring of reinforced concrete building using hysteresis loop analysis", Procedia Eng., 199, 1074-1079. https://doi.org/10.1016/j.proeng.2017.09.072.
  75. Zhou, C., Chase, J.G., Rodgers, G.W. and Iihoshi, C. (2017c), "Damage assessment by stiffness identification for a full-scale three-story steel moment resisting frame building subjected to a sequence of earthquake excitations", Bull. Earthq. Eng., 15(12), 5393-5412. https://doi.org/10.1007/s10518-017-0190-y.
  76. Zhou, C., Chase, J.G., Rodgers, G.W., Tomlinson, H. and Xu, C. (2015), "Physical parameter identification of structural systems with hysteretic pinching", Comput. Aid. Civil Infrastr. Eng., 30(4), 247-262. https://doi.org/10.1111/mice.12108.
  77. Zhou, C., Chase, J.G., Rodgers, G.W. and Xu, C. (2017d), "Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring", Mech. Syst. Signal Pr., 84, 384-398. https://doi.org/10.1016/j.ymssp.2016.07.030.