DOI QR코드

DOI QR Code

Effect of environmentally friendly materials on steel corrosion resistance of sustainable UHPC in marine environment

  • Tahwia, Ahmed M. (Structural Engineering Department, Faculty of Engineering, Mansoura University) ;
  • Elgendy, Gamal M. (Structural Engineering Department, Faculty of Engineering, Mansoura University) ;
  • Amin, Mohamed (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University)
  • Received : 2021.05.15
  • Accepted : 2021.12.22
  • Published : 2022.04.25

Abstract

This study investigates the resistance of sustainable ultra-high performance concrete (UHPC) on steel reinforcement corrosion. For enhancing the sustainability of UHPC, concrete mixes were prepared with ordinary Portland cement main binder, and mixes with moderate to high percentages of blast furnace cement (CEM III), fly ash (FA), and slag cement as partial replacements of the full quantity of the used cement. Linear polarization resistance technique was employed to estimate the electrochemical behavior of the concrete specimens. Results showed that the compressive strength and the resistance of steel to corrosion in marine environments can be enhanced by improving the sustainability of UHPC through incorporation of CEM III, FA, and slag cement. FA replacement of up to 50% with the addition of 15% SF content produced better compressive strength and steel corrosion resistance than slag cement whether with the use of ordinary Portland cement or blast furnace cement as the main binder.

Keywords

References

  1. Abd El-Hakim, R.T., Elgendy, G.M., El-Badawy, S.M. and Amin, M. (2021), "Performance evaluation of steel slag high performance concrete for sustainable pavements", Int. J. Pave. Eng., 1-19. https://doi.org/10.1080/10298436.2021.1922908.
  2. Abuzuhri, I.O. and Tayeh, B.A. (2018), "Factors affecting sustainability performance during the construction phase in the building projects in Gaza step", A Thesis, The Islamic University of Gaza,
  3. Afzali, M. and Rostamiyan, Y. (2020), "Study the effect of machining process and Nano Sio2 on GFRP mechanical performances", Struct. Eng. Mech., 76(2), 175-191. https://doi.org/10.12989/sem.2020.76.2.175.
  4. Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr. Build. Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541.
  5. Ahmad, S. (2003), "Reinforcement corrosion in concrete structures, its monitoring and service life prediction-A review", Cement Concrete Compos., 25(4-5), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0.
  6. Ahmad, S., Hakeem, I. and Maslehuddin, M. (2016), "Development of an optimum mixture of ultra-high performance concrete", Eur. J. Environ. Civil Eng., 20(9), 1106-1126. https://doi.org/10.1080/19648189.2015.1090925.
  7. Al-Mashhadani, M.M., Canpolat, O., Aygormez, Y., Uysal, M. and Erdem, S. (2018), "Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites", Constr. Build. Mater., 167, 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.
  8. Alaee, F.J. (2002), "Retrofitting of concrete structures using high performance fibre reinforced cementitious composite (HPFRCC)", Doctoral Dissertation, Cardiff University.
  9. Aldahdooh, M. A. (2018), "Utilization of by-product materials in ultra-high performance fiber reinforced cementitious composites", Cement Bas. Mater., 113-133. https://doi.org/10.5772/intechopen.74376.
  10. AM OND, S.D.I. (2007), "Physical and chemical characteristics of cement composites", Durability of Concrete and Cement Composites, 10-44.
  11. Amin, M. and Abu el-Hassan, K. (2015), "Effect of using different types of nano materials on mechanical properties of high strength concrete", Constr. Build. Mater., 80, 116-124. https://doi.org/10.1016/j.conbuildmat.2014.12.075.
  12. Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultra-high performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
  13. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
  14. Andrade, C. and Alonso, C. (2004), "Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method", Mater. Struct., 37(9), 623-643. https://doi.org/10.1007/BF02483292.
  15. Andrade, C. and Torres, J. (2013), "Long term carbonation of UHPC", RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC 2013, Marseille, France, October.
  16. Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2011), "Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion", Electrochimica Acta, 56(17), 5877-5889. https://doi.org/10.1016/j.electacta.2011.04.124.
  17. Arya, C. and Xu, Y. (1995), "Effect of cement type on chloride binding and corrosion of steel in concrete", Cement Concrete Res., 25(4), 893-902. https://doi.org/10.1016/0008-8846(95)00080-V.
  18. Askar, L.K., Tayeh, B.A. and Abu Bakar, B.H. (2012), "Effect of different curing conditions on the mechanical properties of UHPFC", Awam International Conference on Civil Engineering (AICCE'12) and Geohazard Information Zonation (GIZ'12), 4(3).
  19. Askar, L.K., Tayeh, B.A., Abu Bakar, B.H. and Zeyad, A.M. (2017), "Properties of ultra-high performance fiber concrete (UHPFC) under different curing regimes", Int. J. Civil Eng. Technol. (IJCIET), 8(4).
  20. ASTM G 59-97 (2014), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, American Society for Testing and Materials, Philadelphia, PA
  21. ASTM, C (1999), 876-99 Standard, Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, American Society for Testing and Materials, West Conshohocken, PA.
  22. Baharuddin, N.K., Mohamed Nazri, F., Abu Bakar, B.H., Beddu, S. and Tayeh, B.A. (2020), "Potential use of ultra high-performance fibre-reinforced concrete as a repair material for fire-damaged concrete in terms of bond strength", Int. J. Integ. Eng., 12(9).
  23. Barbhuiya, S., Chow, P. and Memon, S. (2015), "Microstructure, hydration and nanomechanical properties of concrete containing metakaolin", Constr. Build. Mater., 95, 696-702. https://doi.org/10.1016/j.conbuildmat.2015.07.101.
  24. Berkeley, K. G. C. and Pathmanaban, S. (1990), Cathodic Protection of Reinforcement Steel in Concrete.
  25. Berradja, A. (2019), "Electrochemical techniques for corrosion and tribocorrosion monitoring: methods for the assessment of corrosion rates", Corros. Inhibit., 167-192.
  26. Berry, E.E., Hemmings, R.T. and Cornelius, B.J. (1990), "Mechanisms of hydration reactions in high volume FA pastes and mortars", Cement Concrete Compos., 12(4), 253-261. https://doi.org/10.1016/0958-9465(90)90004-H.
  27. Bezerra, E.M., Joaquim, A.P., Savastano Jr., H., John, V.M. and Agopyan, V. (2006), "The effect of different mineral additions and synthetic fiber contents on properties of cement based composites", Cement Concrete Compos., 28(6), 555-563. https://doi.org/10.1016/j.cemconcomp.2006.02.001.
  28. Boivin, S., Acker, P., Rigaud, S. and Clavaud, B. (1998), "Experimental assessment of chemical shrinkage of hydrating cement pastes", Autoshrink, 98, 77-88.
  29. Broomfield, J.P. (2003), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, CRC Press.
  30. Chen, H.P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech., 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
  31. Cheyrezy, M., Maret, V. and Frouin, L. (1995), "Microstructural analysis of RPC (reactive powder concrete)", Cement Concrete Res., 25(7), 1491-1500. https://doi.org/10.1016/0008-8846(95)00143-Z.
  32. Chu, H., Wang, F., Wang, L., Feng, T. and Wang, D. (2020), "Mechanical properties and environmental evaluation of ultra-high-performance concrete with aeolian sand", Mater., 13(14), 3148. https://doi.org/10.3390/ma13143148.
  33. Constantinides, G. and Ulm, F.J. (2007), "The nanogranular nature of C-S-H", J. Mech. Phys. Solid., 55(1), 64-90. https://doi.org/10.1016/j.jmps.2006.06.003.
  34. Corinaldesi, V. and Moriconi, G. (2004), "Durable fiber reinforced self-compacting concrete", Cement Concrete Res., 34(2), 249-254. https://doi.org/10.1016/j.cemconres.2003.07.005.
  35. Cucchiara, C., Fossetti, M. and Papia, M. (2012), "Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams", Struct. Eng. Mech., 42(4), 551-570. https://doi.org/10.12989/sem.2012.42.4.551.
  36. de Larrard, F. and Sedran, T. (1994), "Optimization of ultra-high-performance concrete by the use of a packing model", Cement Concrete Res., 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1.
  37. Dhawan, S., Bhalla, S. and Bhattacharjee, B. (2014), "Reinforcement corrosion in concrete structures and service life predictions-A review", 9th International Symposium on Advanced Science and Technology in Experimental Mechanics, New Delhi, India, November .
  38. Dousti, A., Shekarchi, M. and Tadayon, M. (2009), "Effect of silica fume on chloride binding in concrete", International Conference on Construction Materials: Performance, Innovations and Structural Implications, 4, 715-720.
  39. Duan, P., Shui, Z., Chen, W. and Shen, C. (2013), "Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete", Constr. Build. Mater., 44, 1-6. https://doi.org/10.1016/j.conbuildmat.2013.02.075.
  40. Eide, M.B. and Hisdal, J.M. (2012), "Ultra High Performance Fibre Reinforced Concrete (UHPFRC)-State of the art: FA 2 competitive constructions", SP 2.2 Ductile High Strength Concrete.
  41. EN, B. (2011), Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements (BS EN 197-1), British European Standards Specifications.
  42. Enos, D.G. and Scribner, L.L. (1997), "The potentiodynamic polarization scan", Technical Report, 33, Solartron Instruments, Hampshire, UK.
  43. Erdem, S., Dawson, A.R. and Thom, N.H. (2012), "Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates", Cement Concrete Res., 42(2), 291-305. https://doi.org/10.1016/j.cemconres.2011.09.015.
  44. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021), "Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions", J. Build. Eng., 43, 102569. https://doi.org/10.1016/j.jobe.2021.102569.
  45. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Constr. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279.
  46. Feldman, R.F., Carette, G.G. and Malhotra, V.M. (1990), "Studies on mechanics of development of physical and mechanical properties of high-volume FA-cement pastes", Cement Concrete Compos., 12(4), 245-251. https://doi.org/10.1016/0958-9465(90)90003-G.
  47. Figueira, R.B. (2017), "Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review", Appl. Sci., 7(11), 1157. https://doi.org/10.3390/app7111157.
  48. Frazao, C., Barros, J., Camoes, A., Alves, A.C. and Rocha, L. (2016), "Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete", Cement Concrete Res., 79, 112-122. https://doi.org/10.1016/j.cemconres.2015.09.005.
  49. Fu, T. (2011), "Autogenous deformation and chemical shrinkage of high performance cementitious systems", Masters Thesis, Oregon State University, USA.
  50. Gonzalez, J.A., Miranda, J.M. and Feliu, S. (2004), "Considerations on reproducibility of potential and corrosion rate measurements in reinforced concrete", Corros. Sci., 46(10), 2467-2485. https://doi.org/10.1016/j.corsci.2004.02.003.
  51. Grabowski, E. and Gillott, J.E. (1989), "Effect of replacement of silica flour with silica fume on engineering properties of oilwell cements at normal and elevated temperatures and pressures", Cement Concrete Res., 19(3), 333-344. https://doi.org/10.1016/0008-8846(89)90023-9.
  52. Granju, J.L. and Balouch, S.U. (2005), "Corrosion of steel fibre reinforced concrete from the cracks", Cement Concrete Res., 35(3), 572-577. https://doi.org/10.1016/j.cemconres.2004.06.032.
  53. Gupta, S. (2014), "Development of ultra-high performance concrete incorporating blend of slag and silica fume as cement replacement", Int. J. Civil Struct. Eng. Res., 2(1), 35-51.
  54. Hansson, C.M., Poursaee, A. and Jaffer, S.J. (2007), "Corrosion of reinforcing bars in concrete", R&D Serial, 3013, 106-124.
  55. Heniegal, A.M., Amin, M. and Youssef, H. (2017), "Effect of silica fume and steel slag coarse aggregate on the corrosion resistance of steel bars", Constr. Build. Mater., 155, 846-851. https://doi.org/10.1016/j.conbuildmat.2017.08.111.
  56. Hoar, T.P. (1967), "On the relation between corrosion rate and polarization resistance", Corros. Sci., 7(7), 455-458. https://doi.org/10.1016/S0010-938X(67)80058-1.
  57. Hustrulid, W.A. (2017), "Ore", Encyclopedia Britannica, March. https://www.britannica.com/science/ore-mining.
  58. Isa, M.N., Pilakoutas, K., Guadagnini, M. and Angelakopoulos, H. (2020), "Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres", Constr. Build. Mater., 255, 119272. https://doi.org/10.1016/j.conbuildmat.2020.119272.
  59. Islam, M.A. (2015), "Corrosion behaviours of high strength TMT steel bars for reinforcing cement concrete structures", Procedia Eng., 125, 623-630. https://doi.org/10.1016/j.proeng.2015.11.084.
  60. Karthick, B. and Muthuraj, M.P. (2021), "Effect of medium coarse aggregate on fracture properties of ultra-high strength concrete", Struct. Eng. Mech., 77(1), 103-114. https://doi.org/10.12989/sem.2021.77.1.103.
  61. Kheir, J., Hilloulin, B., Loukili, A. and De Belie, N. (2021), "Chemical shrinkage of low water to cement (w/c) Ratio CEM I and CEM III cement pastes incorporating silica fume and filler", Mater., 14(5), 1164. https://doi.org/10.3390/ma14051164.
  62. Lambert, P., Page, C.L. and Short, N.R. (1985), "Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water", Cement Concrete Res., 15(4), 675-680. https://doi.org/10.1016/0008-8846(85)90068-7.
  63. Lei, V.Y., Nematollahi, B., Said, A.B.M., Gopal, B.A. and Yee, T.S. (2012), "Application of ultra-high performance fiber reinforced concrete-The Malaysia perspective", Int. J. Sustain. Constr. Eng. Technol., 3(1), 26-44.
  64. Li, C., Sun, H. and Li, L. (2010), "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements", Cement Concrete Res., 40(9), 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020.
  65. Li, P.P., Brouwers, H.J.H., Chen, W. and Yu, Q. (2020), "Optimization and characterization of high-volume limestone powder in sustainable Ultra-high Performance Concrete", Constr. Build. Mater., 242, 118112. https://doi.org/10.1016/j.conbuildmat.2020.118112.
  66. Li, P.P., Cao, Y.Y.Y., Brouwers, H.J.H., Chen, W. and Yu, Q.L. (2019), "Development and properties evaluation of sustainable ultra-high performance pastes with quaternary blends", J. Clean. Prod., 240, 118124. https://doi.org/10.1016/j.jclepro.2019.118124.
  67. Liu, Z., El-Tawil, S., Hansen, W. and Wang, F. (2018), "Effect of slag cement on the properties of ultra-high performance concrete", Constr. Build. Mater., 190, 830-837. https://doi.org/10.1016/j.conbuildmat.2018.09.173.
  68. Lu, T., Li, Z. and Huang, H. (2020), "Effect of supplementary materials on the autogenous shrinkage of cement paste", Mater., 13, 3367. https://doi.org/10.3390/ma13153367.
  69. Mansfeld, F. (1976), "The polarization resistance technique for measuring corrosion currents", Advances in Corrosion Science and Technology, Springer, Boston, MA.
  70. Markeset, G. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete", COIN Workshop, Trondheim, Norway, June.
  71. Meng, W., Samaranayake, V.A. and Khayat, K.H. (2018), "Factorial design and optimization of ultra-high-performance concrete with lightweight sand", ACI Mater. J., 115(1), 129-129.
  72. Meng, W., Valipour, M. and Khayat, K.H. (2017), "Optimization and performance of cost-effective ultra-high performance concrete", Mater. Struct., 50(1), 29. https://doi.org/10.1617/s11527-016-0896-3.
  73. Mohammed, A.N., Johari, M.A.M., Zeyad, A.M., Tayeh, B.A. and Yusuf, M.O. (2014), "Improving the engineering and fluid transport properties of ultra-high strength concrete utilizing ultrafine palm oil fuel ash", J. Adv. Concrete Technol., 12(4), 127-137. https://doi.org/10.3151/jact.12.127.
  74. Murthy, A.R. and Iyer, N.R. (2014), "Assessment of Embodied Energy in the Production of Ultra-High Performance Concrete (UHPC)", Int. J. Stud. Res. Technol. Manage., 2(03), 113-120.
  75. Naderi, M. (2015), "Surface area: Brunauer-Emmett-Teller (BET)", Progress in Filtration and Separation, Academic Press.
  76. Nematzadeh, M. and Fallah-Valukolaee, S. (2017), "Effectiveness of fibers and binders in high-strength concrete under chemical corrosion", Struct. Eng. Mech., 64(2), 243-257. https://doi.org/10.12989/sem.2017.64.2.243.
  77. Neville, A. (1995), "Chloride attack of reinforced concrete: An overview", Mater. Struct., 28(2), 63-70. https://doi.org/10.1007/BF02473172.
  78. Nilsson, L. (2018), "Development of UHPC concrete using mostly locally available raw materials", 78.
  79. Ohno, K. and Alhara, F. (1989), "Relative durability properties and strengths of mortars containing finely ground silica and silica fume", Spec. Publ., 114, 815-826.
  80. Pernicova, R. (2014), "Chloride transport in ultra-high performance concrete", Int. J. Mater. Metal. Eng., 8(11), 1192-1195. https://doi.org/10.5281/zenodo.1096663.
  81. Polder, R., Andrade, C., Elsener, B., Vennesland, O., Gulikers, J., Weidert, R. and Raupach, M. (2000), "RILEM TC 154-EMC: electrochemical techniques for measuring metallic corrosion", Mater. Struct., 33, 603-611. https://doi.org/10.1007/BF02480599
  82. Qian, D., Yu, R., Shui, Z., Sun, Y., Jiang, C., Zhou, F., ... & He, Y. (2020), "A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material", J. Clean. Prod., 261, 121231. https://doi.org/10.1016/j.jclepro.2020.121231.
  83. Rani, S., Abdullah, W.F.H., Zain, Z.M. and NZN, A. (2018), "Integrated circuit design of 3 electrode sensing system using two-stage operational amplifier", MS&E, 340(1), 012017.
  84. Resplendino, J. (2011), "Introduction: What is a UHPFRC?", Designing and Building with UHPFRC, 3-14.
  85. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2.
  86. Rico, Y., Bidegain, J.C. and Elsner, C.I. (2009), "Synthetic and natural Iron oxide characterization through microparticle voltammetry", Geofisica Internacional, 48(2), 221-235. https://doi.org/10.22201/igeof.00167169p.2009.48.2.2140
  87. Roy, D.M. (1982), "Hydration, structure, and properties of blast furnace slag cements, mortars, and concrete", J. Proceed., 79(6), 444-457.
  88. Said-Mansour, M., Kadri, E.H., Kenai, S., Ghrici, M. and Bennaceur, R. (2011), "Influence of calcined kaolin on mortar properties", Constr. Build. Mater., 25(5), 2275-2282. https://doi.org/10.1016/j.conbuildmat.2010.11.017.
  89. Sinha, P., Datar, A., Jeong, C., Deng, X., Chung, Y.G. and Lin, L.C. (2019), "Surface area determination of porous materials using the Brunauer-Emmett-Teller (BET) method: limitations and improvements", J. Phys. Chem. C, 123(33), 20195-20209. https://doi.org/10.1021/acs.jpcc.9b02116.
  90. Solgaard, A., Kuter, A., Edvardsen, C., Stang, H. and Geiker, M. (2010,), "Durability aspects of steel fibre reinforced concrete in civil infrastructure", Proc. 2nd International Symposium on Service Life Design for Infrastructure, Delft, The Netherlands. October.
  91. Soltangharaei, V., Hill, J.W., Ai, L., Anay, R., Greer, B., Bayat, M. and Ziehl, P. (2020), "Acoustic emission technique to identify stress corrosion cracking damage", Struct. Eng. Mech., 75(6), 723-736. https://doi.org/10.12989/sem.2020.75.6.723.
  92. Song, H.W. and Saraswathy, V. (2007), "Corrosion monitoring of reinforced concrete structures-A", Int. J. Electrochem. Sci., 2, 1-28. https://doi.org/10.1016/S1452-3981(23)17049-0
  93. Standard, A.S.T.M. C192 (2016), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA.
  94. Standard, B. (2009), Testing Hardened Concrete, Compressive Strength of Test Specimens, BS EN, 12390-3.
  95. Suliman, L.K.M. and Omran, A. (2009), "Sustainable development and construction industry in Malaysia", Econom. Soc. Polit. Cultur. Prob. Future Soc. Manage., 10, 76-85.
  96. Tahwia, A.M., Abdel-Raheem, A., Abdel-Aziz, N. and Amin, M. (2021), "Light transmittance performance of sustainable translucent self-compacting concrete", J. Build. Eng., 38, 102178. https://doi.org/10.1016/j.jobe.2021.102178.
  97. Tahwia, A.M., El-Far, O. and Amin, M. (2022), "Characteristics of sustainable high strength concrete incorporating eco-friendly materials", Innov. Infrastr. Solution., 7(1), 1-13. https://doi.org/10.1007/s41062-021-00609-7.
  98. Tahwia, A.M., Elgendy, G.M. and Amin, M. (2021), "Durability and microstructure of eco-efficient ultra-high-performance concrete", Constr. Build. Mater., 303, 124491. https://doi.org/10.1016/j.conbuildmat.2021.124491.
  99. Tang, C.W. (2019), "Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures", The 2019 World Congress on Advances in Structural Engineering and Mechanics (ASEM19), Jeju Island, Korea, September.
  100. Tayeh, B.A. (2018), "Effects of marble, timber, and glass powder as partial replacements for cement", J. Civil Eng. Constr., 7(2), 63-71. https://doi.org/10.32732/jcec.2018.7.2.63.
  101. Tayeh, B.A., Aadi, A.S., Hilal, N.N., Bakar, B.A., Al-Tayeb, M.M. and Mansour, W.N. (2019), "Properties of ultra-highperformance fiber-reinforced concrete (UHPFRC)-a review paper", AIP Conf. Proc., 2157(1), 020040. https://doi.org/10.1063/1.5126575.
  102. Tayeh, B.A., Abu Bakar, B.H., Johari, M.A. and Zeyad, A.M. (2013), "The role of silica fume in the adhesion of concrete restoration systems", Adv. Mater. Res., 626, 265-269. https://doi.org/10.4028/www.scientific.net/AMR.626.265.
  103. Tayeh, B.A., Bakar, B.A. and Johari, M.M. (2012), "Mechanical properties of old concrete-UHPFC interface. In Concrete Repair, Rehabilitation and Retrofitting III: 3rd International Conference on Concrete Repair", Rehabilitation and Retrofitting, ICCRRR-3, Cape Town, South Africa, August.
  104. Tayeh, B.A., Haido, J.H. and Zainalabdeen, M.A. (2021), "Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass", Adv. Concrete Constr., 11(3), 239-253. https://doi.org/10.12989/ACC.2021.11.3.239
  105. Tayeh, B.A., Naja, M.A., Shihada, S. and Arafa, M. (2019), "Repairing and strengthening of damaged RC columns using thin concrete jacketing", Adv. Civil Eng., 2019, Article ID 2987412. https://doi.org/10.1155/2019/2987412.
  106. Tuutti, K. (1982), Corrosion of Steel in Concrete, Cement-och betonginst.
  107. Uher, T.E. and Lawson, W. (1998), "Sustainable development in construction", Proceedings of the 14th CIB World Building Congress on Construction and the Environment, Gavle, Sweden, June.
  108. Verma, S.K., Bhadauria, S.S. and Akhtar, S. (2014), "Monitoring corrosion of steel bars in reinforced concrete structures", Scientif. World J., 2014. Article ID 957904. https://doi.org/10.1155/2014/957904.
  109. Voo, Y.L., Sittampalam, K., Peng, C.W. and Singh, S. (2014), "Design of ultra-high performance concrete Jetty in marine environment", Proceedings of the 12th International Conference on Concrete Engineering & Technology-2014, CONCET, 239e248.
  110. Wagner, C. and Traud, W. (2006), "On the interpretation of corrosion processes through the superposition of electrochemical partial processes and on the potential of mixed electrodes with a Perspective by F. Mansfeld", Corros., 62(10), 843-855. https://doi.org/10.5006/1.3279894.
  111. Wang, C., Yang, C., Liu, F., Wan, C. and Pu, X. (2012), "Preparation of ultra-high performance concrete with common technology and materials", Cement Concrete Compos., 34(4), 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005.
  112. Wei, F., Michael, W.G. and Della, M.R. (1985), "The retarding effects of FA upon the hydration of cement pastes: The first 24 hours", Cement Concrete Res., 15(1), 174-184. https://doi.org/10.1016/0008-8846(85)90024-9.
  113. Wente, E.F., Wondris, E.F. and Nutting, J. (2019), "steel", EncyclopediaBritannica. https://www.britannica.com/technology/steel.
  114. Wu, C.H., Lin, Y.F., Lin, S.K. and Huang, C.H. (2020), "Temperature development and cracking characteristics of high strength concrete slab at early age", Struct. Eng. Mech., 74(6), 747-756. https://doi.org/10.12989/sem.2020.74.6.747.
  115. Yalcinkaya, C . and Copuroglu, O. (2020), "Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag", J. Build. Eng., 34, 101915. https://doi.org/10.1016/j.jobe.2020.101915.
  116. Yang, R., Yu, R., Shui, Z., Gao, X., Xiao, X., Fan, D., ... & He, Y. (2020), "Feasibility analysis of treating recycled rock dust as an environmentally friendly alternative material in Ultra-High Performance Concrete (UHPC)", J. Clean. Prod., 258, 120673. https://doi.org/10.1016/j.jclepro.2020.120673.
  117. Yildizel, S.A., Tayeh, B.A. and Calis, G. (2020), "Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques", J. Mater. Res. Technol., 9(2), 2093-2106. https://doi.org/10.1016/j.jmrt.2020.02.083.
  118. Yilmaz, M. and Bakis, A. (2015), "Sustainability in construction sector", Procedia-Soc. Behav. Sci., 195, 2253-2262. https://doi.org/10.1016/j.sbspro.2015.06.312.
  119. Yogendran, V., Langan, B.W. and Ward, M.A. (1991), "Hydration of cement and silica fume paste", Cement Concrete Res., 21(5), 691-708. https://doi.org/10.1016/0008-8846(91)90164-D.
  120. Yu, R., Spiesz, P.H.J.H. and Brouwers, H.J.H. (2015), "Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses", Cement Concrete Compos., 55, 383-394. https://doi.org/10.1016/j.cemconcomp.2014.09.024.
  121. Zabihi, H. and Habib, F. (2012), "Sustainability in building and construction: Revising definitions and concepts", Int. J. Emerg. Sci., 2(4), 570.
  122. Zeyad, A.M., Johari, M.A.M., Abutaleb, A. and Tayeh, B.A. (2021), "The effect of steam curing regimes on the chloride resistance and pore size of high-strength green concrete", Constr. Build. Mater., 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409.
  123. Zeyad, A.M., Johari, M.A.M., Alharbi, Y.R., Abadel, A.A., Amran, Y.M., Tayeh, B.A. and Abutaleb, A. (2021), "Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete", J. Build. Eng., 38, 102204. https://doi.org/10.1016/j.jobe.2021.102204.
  124. Zhang, P. and Li, Q.F. (2013), "Combined effect of polypropylene fiber and silica fume on workability and carbonation resistance of concrete composite containing fly ash", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 227(3), 250-258. https://doi.org/10.1177/1464420712458198.
  125. Zhang, X., Zhao, S., Liu, Z. and Wang, F. (2019), "Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness", Constr. Build. Mater., 214, 28-36. https://doi.org/10.1016/j.conbuildmat.2019.04.106.