DOI QR코드

DOI QR Code

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep (Department of Civil Engineering, Engineering Faculty, Sakarya University)
  • Received : 2021.08.19
  • Accepted : 2022.01.12
  • Published : 2022.04.25

Abstract

This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

Keywords

Acknowledgement

The author would like to thank Phd. Elif Agcakoca, Phd. Mohammad Manzoor Nasery and Sakarya University for scientific contributions to the study.

References

  1. ABAQUS/CAE V6.12 Programme (2016), Dassault Systemes Simulia Corp., Providence, RI, USA.
  2. Abdzaid, H.M. and Kamonna, H.H. (2019), "Flexural strengthening of continuous reinforced concrete beams with near-surface-mounted reinforcement", Pract. Period. Struct. Des. Constr., 24(3), 04019014. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000428.
  3. Afefy, H.M., Kassem, N.M. and Taher, S.E.D.F. (2019), "Retrofitting of defected closure strips for full-depth precast concrete deck slabs using EB-CFRP sheets", Pract. Period. Struct. Des. Constr., 24(4), 04019025. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000449.
  4. Agcakoca, E. and Aktas, M. (2012), "The impact of the HMCFRP ratio on the strengthening of steel composite I-beams", Math. Prob. Eng., 2012, Article ID 183906. https://doi.org/10.1155/2012/183906.
  5. Agcakoca, E. and Biyiklioglu, E. (2020), "Experimentally and numerically investigating the performances of aramid fiber-reinforced steel beams under impact loadings", Arab. J. Sci. Eng. (Springer Science & Business Media BV), 45(10). https://doi.org/10.1007/s13369-020-04608-1.
  6. Alam, M.I., Fawzia, S. and Zhao, X.L. (2016), "Numerical investigation of CFRP strengthened full scale CFST columns subjected to vehicular impact", Eng. Struct., 126, 292-310. https://doi.org/10.1016/j.engstruct.2016.07.058.
  7. Alam, M.I., Fawzia, S., Zhao, X.L. and M. Remennikov, A. (2020), "Numerical modeling and performance assessment of frp-strengthened full-scale circular-hollow-section steel columns subjected to vehicle collisions", J. Compos. Constr., 24(3), 04020011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001011.
  8. Al-Mosawe, A., Al-Mahaidi, R. and Zhao, X.L. (2016), "Bond behaviour between CFRP laminates and steel members under different loading rates", Compos. Struct., 148, 236-251. https://doi.org/10.1016/j.compstruct.2016.04.002.
  9. Al-Zubaidy, H., Al-Mahaidi, R. and Zhao, X.L. (2012), "Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads", Compos. Struct., 94(2), 510-518. https://doi.org/10.1016/j.compstruct.2011.08.018.
  10. Anil, O., Erdem, R.T. and Tokgoz, M.N. (2018), "Investigation of lateral impact behavior of RC columns", Comput. Concrete, 22(1), 123-132. https://doi.org/10.12989/cac.2018.22.1.123.
  11. ASTM C1116/C1116M-10a (2010), Standard Specification for Fiber-Reinforced Concrete, American Society for Testing and Materials (ASTM), U.S.A.
  12. ASTM E8/E8M-21 (2021), Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials (ASTM), U.S.A.
  13. Aydin, A.C., Yaman, Z., Agcakoca, E., Kilic, M., Maali, M. and Dizaji, A.A. (2020), "CFRP effect on the buckling behavior of dented cylindrical shells", Int. J. Steel Struct., 20(2), 425-435. https://doi.org/10.1007/s13296-019-00294-4.
  14. Bambach, M.R. (2011), "Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads", Thin Wall. Struct., 49(10), 1251-1260 https://doi.org/10.1016/j.tws.2011.05.009.
  15. Bambach, M.R. (2018), "Validation of a general design procedure for the transverse impact capacity of steel columns", J. Constr. Steel Res., 150, 153-161. https://doi.org/10.1016/j.jcsr.2018.08.021.
  16. Bambach, M.R., Jama, H., Zhao, X.L. and Grzebieta, R.H. (2008), "Hollow and concrete filled steel hollow sections under transverse impact loads", Eng. Struct., 30(10), 2859-2870. https://doi.org/10.1016/j.engstruct.2008.04.003.
  17. Boresi, P. and Schmidt, R.J. (2003), Advanced Mechanics of Materials, 6th Edition, Wiley and Sons, New York.
  18. Celik, M., Seferoglu, M.T., Akpinar, M.V., Nasery, M.M. and Seferoglu, A.G. (2021), "Evaluation of load-transfer efficiency of steel mesh reinforced contraction joints in concrete pavement: Accelerated pavement test and FE analysis", Teknik Dergi, 32(6), 11337-11359. https://doi.org/10.18400/tekderg.643027.
  19. Chandrasekaran, S. and Kiran, P.A. (2018), "Mathieu stability of offshore Buoyant Leg storage & regasification platform", Ocean Syst. Eng., 8(3), 345-360. https://doi.org/10.12989/ose.2018.8.3.345.
  20. Chandrasekaran, S. and Nagavinothini, R. (2019), "Response of triceratops to impact forces: numerical investigations", Ocean Syst. Eng., 9(4), 349-368. https://doi.org/10.12989/ose.2019.9.4.349.
  21. Deng, Y., Tuan, C.Y. and Xiao, Y. (2012), "Flexural behavior of concrete-filled circular steel tubes under high-strain rate impact loading", J. Struct. Eng., 138(3), 449-456. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000464.
  22. EN 14889-2 (2006), Fibres for Concrete-Part 2: Polymer Fibres-Definitions, Specifications and Conformity, European Committee for Standardization.
  23. Eom, S.S., Vu, Q.V., Choi, J.H., Papazafeiropoulos, G. and Kim, S.E. (2019), "Behavior of composite CFST beam-steel column joints", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
  24. Faggiano, B., Formisano, A., Vaiano, G., Landolfo, R. and Mazzolani, F.M. (2017), "Numerical study on steel braces under reversed cyclic loads", EUROSTEEL 2017, Copenhagen, Denmark, September.
  25. Fawzia, S. (2013), "Evaluation of shear stress and slip relationship of composite lap joints", Compos. Struct., 100, 548-553. https://doi.org/10.1016/j.compstruct.2012.12.027.
  26. Fawzia, S., Al-Mahaidi, R. and Zhao, X.L. (2006), "Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP", Compos. Struct., 75(1-4), 156-162. https://doi.org/10.1016/j.compstruct.2006.04.038.
  27. Ferrotto, M.F., Cavaleri, L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.
  28. Fukumoto, Y. (1997), Structural Stability Design, Steel and Composite Structures, Pergamon, Oxford.
  29. Goldston, M., Remennikov, A. and Sheikh, M.N. (2016), "Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading", Eng. Struct., 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044.
  30. Gou, H., Li, L., Hong, Y., Bao, Y. and Pu, Q. (2021), "In-situ dynamic loading test of a hybrid continuous arch bridge", Struct. Eng. Mech., 77(6), 809-817. https://doi.org/10.12989/sem.2021.77.6.809.
  31. Hajjar, J.F. (2000). "Concrete-filled steel tube columns under earthquake loads", Prog. Struct. Eng. Mater., 2(1), 72-81. https://doi.org/10.1002/(SICI)1528-2716(200001/03)2:1<72::AID-PSE9>3.0.CO;2-E.
  32. Han, L.H., An, Y.F., Roeder, C. and Ren, Q.X. (2015), "Performance of concrete-encased CFST box members under bending", J. Constr. Steel Res., 106, 138-153. https://doi.org/10.1016/j.jcsr.2014.12.011.
  33. Kaewunruen, S. and Remennikov, AM. (2009), "Impact capacity of railway prestressed concretesleepers", Eng. Fail. Anal., 16, 1520-32. https://doi.org/10.1016/j.engfailanal.2008.09.026.
  34. Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207.
  35. Kordsa (2021), https://www.kordsa.com/kratos/
  36. Lee, S.H., Abolmaali, A., Shin, K.J. and Lee, H.D. (2020), "ABAQUS modeling for post-tensioned reinforced concrete beams", J. Build. Eng., 30, 101273. https://doi.org/10.1016/j.jobe.2020.101273.
  37. Liu, Y., Zeng, L., Liu, C., Mo, J. and Chen, B. (2020), "Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact", Struct. Eng. Mech., 76(4), 465-477. https://doi.org/10.12989/sem.2020.76.4.465.
  38. Maali, M., Kilic, M., Yaman, Z., Agcakoca, E. and Aydin, A. C. (2019), "Buckling and post-buckling behavior of various dented cylindrical shells using CFRP strips subjected to uniform external pressure: Comparison of theoretical and experimental data", Thin Wall. Struct., 137, 29-39. https://doi.org/10.1016/j.tws.2018.12.042.
  39. Mantena, P.R. and Mann, R. (2003), "Impact and dynamic response of high-density structural foams used as filler inside circular steel tube", Compos. Struct., 61(4), 291-302. https://doi.org/10.1016/S0263-8223(03)00062-X.
  40. Nasery, M.M., Agacakoca, E. and Yaman, Z. (2020a), "Experimental and numerical analysis of impactor geometric shape effects on steel beams under impact loading", Struct., 27, 1118-1138. https://doi.org/10.1016/j.istruc.2020.07.012.
  41. Nasery, M.M., Husem, M., Okur, F.Y. and Altunisik, A.C. (2020b), "Numerical and experimental investigation on dynamic characteristic changes of encased steel profile before and after cyclic loading tests", Int. J. Civil Eng., 18(12), 1411-1431. https://doi.org/10.1007/s40999-020-00545-0.
  42. National Instruments (2020), LabVIEW Basics Introduction, Course Manual, U.S.A
  43. Patidar, A. K. (2012), "Behaviour of Concrete Filled Rectangular Steel Tube Column", IOSR Journal of Mechanical and Civil Engineering, 4(2), 46-52 https://www.iosrjournals.org/iosrjmce/papers/vol4-issue2/H0424652.pdf?id=2536. https://doi.org/10.9790/1684-0424652
  44. Raj, A., Nagarajan, P. and Aikot Pallikkara, S. (2020), "Application of fiber-reinforced rubcrete in fencing posts", Pract. Period. Struct. Des. Constr., 25(4), 04020037. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000512.
  45. Shakir, A.S., Guan, Z.W. and Jones, S.W. (2016), "Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening", Eng. Struct., 116, 148-162. https://doi.org/10.1016/j.engstruct.2016.02.047.
  46. Shen, Q., Wang, J., Wang, J. and Ding, Z. (2019), "Axial compressive performance of circular CFST columns partially wrapped by carbon FRP", J. Constr. Steel Res., 155, 90-106. https://doi.org/10.1016/j.jcsr.2018.12.017.
  47. Siwowski, T.W. and Siwowska, P. (2018), "Experimental study on CFRP-strengthened steel beams", Compos. Part B: Eng., 149, 12-21. https://doi.org/10.1016/j.compositesb.2018.04.060.
  48. Stoner, J.G. and Polak, M.A. (2020), "Finite element modelling of GFRP reinforced concrete beams", Comput. Concrete, 25(4), 369-382. https://doi.org/10.12989/cac.2020.25.4.369.
  49. Subhani, M., Globa, A. and Moloney, J. (2020), "Timber-FRP composite beam subjected to negative bending", Struct. Eng. Mech., 73(3), 353-365. https://doi.org/10.12989/sem.2020.73.3.353.
  50. Turk Standardlari Enstitusu (2017), "TS EN 206:2013+ A1, Concrete-Property, performance, fabrication and conformity", Ankara.
  51. Wang, R., Han, L.H. and Hou, C.C. (2013), "Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model", J. Constr. Steel Res., 80, 188-201. https://doi.org/10.1016/j.jcsr.2012.09.003.
  52. Wang, Z.B., Yu, Q. and Tao, Z. (2015), "Behaviour of CFRP externally-reinforced circular CFST members under combined tension and bending", J. Constr. Steel Res., 106, 122-137. https://doi.org/10.1016/j.jcsr.2014.12.007Get.
  53. Xing, Y., Han, Q., Xu, J., Guo, Q. and Wang, Y. (2016), "Experimental and numerical study on static behavior of elastic concrete-steel composite beams", J. Constr. Steel Res., 123, 79-92. https://doi.org/10.1016/j.jcsr.2016.04.023.
  54. Yan, Q., Li, B., Deng, Z. and Li, B. (2018), "Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train", Struct. Eng. Mech., 65(6), 741-750. https://doi.org/10.12989/sem.2018.65.6.741.
  55. Yang, F.J. and Cantwell, W.J. (2010), "Impact damage initiation in composite materials", Compos. Sci. Technol., 70(2), 336-342. https://doi.org/10.1016/j.compscitech.2009.11.004.
  56. Yang, Y., Sun, D., Xue, Y., Yu, Y., An, K. and Chen, Y. (2021), "Seismic performance of RC columns with encased prefabricated high-strength CFST core", Steel Compos. Struct., 39(6), 723-736. https://doi.org/10.12989/scs.2021.39.6.723.
  57. Yilmaz, M. A. (2015), "Comparison of design requirements according to Eurocode 4 and AISC Codes for composite steel-concrete structural elements", MSc. Thesis, Eskisehir Osmangazi University, Turkey.
  58. Yousuf, M., Uy, B., Tao, Z., Remennikov, A. and Liew, J.Y.R. (2014), "Impact behaviour of precompressed hollow and concrete filled mild and stainless steel columns", J. Constr. Steel Res., 96, 54-68. https://doi.org/10.1016/j.jcsr.2013.12.009.
  59. Zeinoddini, M., Harding, J.E. and Parke, G.A.R. (2008), "Axially pre-loaded steel tubes subjected to lateral impacts (a numerical simulation)", Int. J. Impact Eng., 35(11), 1267-1279. https://doi.org/10.1016/j.ijimpeng.2007.08.002.
  60. Zeinoddini, M., Parke, G.A.R. and Harding, J.E. (2002), "Axially pre-loaded steel tubes subjected to lateral impacts: an experimental study", Int. J. Impact Eng., 27(6), 669-690. https://doi.org/10.1016/S0734-743X(01)00157-9.
  61. Zeng, J.J., Zheng, Y.W., Liu, F., Guo, Y.C. and Hou, C. (2021), "Behavior of FRP Ring-Confined CFST columns under axial compression", Compos. Struct., 257, 113166. https://doi.org/10.1016/j.compstruct.2020.113166.
  62. Zhang, R., Zhi, X.D. and Fan, F. (2017), "Plastic behavior of circular steel tubes subjected to low-velocity transverse impact", Int. J. Impact Eng., 29(8), 1808-1823. https://doi.org/10.1016/j.ijimpeng.2017.12.003.
  63. Zhang, Y., Zhao, Y., Zhang, M., Zhou, Y. and Zhang, Q. (2019), "Numerical study on tensioned membrane structures under impact load", Struct. Eng. Mech., 71(2), 109-118. https://doi.org/10.12989/sem.2019.71.2.109.
  64. Zhi, X.D., Zhang, R., Fan, F. and Huang, C. (2018), "Experimental study on axially preloaded circular steel tubes subjected to low-velocity transverse impact", Thin Wall. Struct., 130, 161-175. https://doi.org/10.1016/j.tws.2018.05.025.