DOI QR코드

DOI QR Code

Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping

고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구

  • Park, Jinsoo (Korea Research Institute of Ships & Ocean Engineering, Deep Ocean Engineering Research Center) ;
  • Jang, Taek Soo (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 박진수 (선박해양플랜트연구소 심해공학연구센터) ;
  • 장택수 (부산대학교 조선해양공학과)
  • Received : 2021.07.24
  • Accepted : 2021.12.29
  • Published : 2022.04.20

Abstract

In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었으며 이에 감사드립니다.

References

  1. Arevalo, E., Gaididei, Y. & Mertens, F.G., 2002. Soliton dynamics in damped and forced Boussinesq equations. The European Physical Journal B - Condensed Matter and Complex Systems, 27(1), pp.63-74. https://doi.org/10.1007/s10051-002-9004-2
  2. Bona, J., Pritchard, L. & Scott, L., 1981. An evaluation of a model equation for water waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 302, pp.457-510.
  3. Boussinesq, J., 1872. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathematiques Pures et Appliquees 2e serie, 17(2), pp.55-108.
  4. Brocchini, M., 2013. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160), pp.1-27. https://doi.org/10.1098/rspa.2013.0496
  5. Cooker, M.J., Weidman, P.D. & Bale, D.S., 1997. Reflection of a high-amplitude solitary wave at a vertical wall. Journal of Fluid Mechanics, 342, pp.141-158. https://doi.org/10.1017/S002211209700551X
  6. Debnath, L., 1994. Nonlinear water waves. Academic Press.
  7. Dutykh, D. & Dias, F., 2007. Dissipative Boussinesq equations. Comptes Rendus Mecanique, 335, pp.559-583. https://doi.org/10.1016/j.crme.2007.08.003
  8. Dutykh, D., 2009. Visco-potential free-surface flows and long wave modelling. European Journal of Mechanics B/Fluids, 28(3), pp.430-443. https://doi.org/10.1016/j.euromechflu.2008.11.003
  9. El-Zoheiry, H., 2002. Numerical study of the improved Boussinesq equation. Chaos, Solitons and Fractals, 14, pp.377-384. https://doi.org/10.1016/S0960-0779(00)00271-X
  10. Jang, T.S., 2017. A new dispersion-relation preserving method for integrating the classical Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 43, pp.118-138. https://doi.org/10.1016/j.cnsns.2016.06.025
  11. Jang, T.S., 2018. An improvement of convergence of a dispersion-relation preserving method for the classical Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 56, pp.144-160. https://doi.org/10.1016/j.cnsns.2017.07.024
  12. Keulegan, G.H., 1948. Gradual damping of solitary waves. Journal of Research of the National Bureau of Standards, 40(6), pp.487-498. https://doi.org/10.6028/jres.040.041
  13. Kim, H. & Oh, J., 2021. On the design of Novel hybrid wave generator. Journal of the Society of Naval Architects of Korea, 58(2), pp.112-120. https://doi.org/10.3744/SNAK.2021.58.2.112
  14. Lee, J.I., Kim, Y.T. & Yoon, S.B., 2007. Stem wave analysis of regular waves using a Boussinesq equation. Korean Society of Coastal and Ocean Engineers, 19(5), pp. 446-456.
  15. Lin, Q., Wu, Y.H., Loxton, R. & Lai, S., 2009. Linear B-spline finite element method for the improved Boussinesq equation. Journal of Computational and Applied Mathematics, 224(2), pp.658-667. https://doi.org/10.1016/j.cam.2008.05.049
  16. Liu, P. & Orfila, A., 2004. Viscous effects on transient long-wave propagation. Journal of Fluid Mechanics, 520, pp.83-92. https://doi.org/10.1017/S0022112004001806
  17. Lu, F., Song, Z. & Zhang, Z., 2016. A compact fourth-order finite difference scheme for the improved Boussinesq equation with damping terms. Journal of Computational Mathematics, 34(5), pp.462-478. https://doi.org/10.4208/jcm.1603-m2014-0193
  18. Madsen, O.S., 1970, Waves generated by a piston-type wavemaker. Proceedings of the 12th Coastal Engineering Conference, American Society of Civil Engineers, 1, pp.589-607.
  19. Mei, C.C., 1983. The applied dynamics of ocean surface waves. World Scientific.
  20. Park, J., 2020. A numerical study of the damped improved Boussinesq equation: Dispersion-Relation Preserving (DRP) numerical solutions. Ph.D. Busan: Pusan National University.
  21. Wang, Q., Zhang, Z. & Zhu, Q., 2013. Numerical simulation of the stochastic damped improved Boussinesq equation. Journal of Mathematical Physics, 54(1), 013503. https://doi.org/10.1063/1.4772608
  22. Wang, S. & Xu, H., 2013. On the asymptotic behavior of solution for the generalized IBq equation with Stokes damped term. Zeitschrift fur angewandte Mathematik und Physik, 64, p.719-731. https://doi.org/10.1007/s00033-012-0257-1
  23. Wang, Q., Zhang, Z., Zhang, X. & Zhu, Q., 2014. Energy-preserving finite volume element method for the improved Boussinesq equation. Journal of Computational Physics, 270, pp.58-69. https://doi.org/10.1016/j.jcp.2014.03.053
  24. Wu, Y. & Hsiao, S., 2018. Generation of stable and accurate solitary waves in a viscous numerical wave tank. Ocean Engineering, 167, pp.102-113. https://doi.org/10.1016/j.oceaneng.2018.08.043
  25. Wu, Y. & Hsiao, S., 2018. Generation of stable and accurate solitary waves in a viscous numerical wave tank. Ocean Engineering, 167, pp.102-113. https://doi.org/10.1016/j.oceaneng.2018.08.043
  26. Zelt, J.A., 1991. The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 15, pp.205-246. https://doi.org/10.1016/0378-3839(91)90003-Y
  27. Zhang, Z. & Lu, F., 2012. Quadratic finite volume element method for the improved Boussinesq equation. Journal of Mathematical Physics, 53(1), 013505. https://doi.org/10.1063/1.3672197